These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 36221589)

  • 1. Investigation of the influence of a spatial beam profile on laser damage growth dynamics in multilayer dielectric mirrors in the near infrared sub-picosecond regime.
    Diop S; Ollé A; Roquin N; Chorel M; Lavastre É; Gallais L; Bonod N; Lamaignère L
    Opt Express; 2022 May; 30(11):17739-17753. PubMed ID: 36221589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the multilayer dielectric mirror design on the laser damage growth in the sub-picosecond regime.
    Diop S; Chorel M; Lavastre É; Roquin N; Gallais L; Bonod N; Lamaignère L
    Appl Opt; 2023 Mar; 62(7):B126-B132. PubMed ID: 37132897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal dependency in the picosecond regime of laser damage growth.
    Ollé A; Diop S; Roquin N; Gallais L; Lamaignère L
    Opt Lett; 2020 Jul; 45(14):4024-4027. PubMed ID: 32667345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust optimization of the laser induced damage threshold of dielectric mirrors for high power lasers.
    Chorel M; Lanternier T; Lavastre É; Bonod N; Bousquet B; Néauport J
    Opt Express; 2018 Apr; 26(9):11764-11774. PubMed ID: 29716095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of the damage growth threshold of multilayer dielectric gratings by picosecond laser pulses based on saturation damage size analysis.
    Hao Y; Sun M; Jiao Z; Guo Y; Pan X; Pang X; Zhu J
    Appl Opt; 2018 May; 57(15):4191-4201. PubMed ID: 29791402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Top-hat Laser Beam Processing and Scanning Strategies in Laser Micro-Structuring.
    Le H; Penchev P; Henrottin A; Bruneel D; Nasrollahi V; Ramos-de-Campos JA; Dimov S
    Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32093369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polarization dependent laser damage growth of optical coatings at sub-picosecond regime.
    Rasedujjaman M; Gallais L
    Opt Express; 2018 Sep; 26(19):24444-24460. PubMed ID: 30469562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetrical damage growth of multilayer dielectric gratings induced by picosecond laser pulses.
    Hao Y; Sun M; Guo Y; Shi S; Pan X; Pang X; Zhu J
    Opt Express; 2018 Apr; 26(7):8791-8804. PubMed ID: 29715842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sub-picosecond laser damage growth on high reflective coatings for high power applications.
    Sozet M; Bouillet S; Berthelot J; Neauport J; Lamaignère L; Gallais L
    Opt Express; 2017 Oct; 25(21):25767-25781. PubMed ID: 29041241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of nodular defects on the laser damage resistance of optical coatings in the femtosecond regime.
    Gallais L; Cheng X; Wang Z
    Opt Lett; 2014 Mar; 39(6):1545-8. PubMed ID: 24690834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser damage density measurement of optical components in the sub-picosecond regime.
    Sozet M; Néauport J; Lavastre E; Roquin N; Gallais L; Lamaignère L
    Opt Lett; 2015 May; 40(9):2091-4. PubMed ID: 25927792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-energy flat-top beams for laser launching using a Gaussian mirror.
    Fujiwara H; Brown KE; Dlott DD
    Appl Opt; 2010 Jul; 49(19):3723-31. PubMed ID: 20648138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implications of laser beam metrology on laser damage temporal scaling law for dielectric materials in the picosecond regime.
    Ollé A; Luce J; Roquin N; Rouyer C; Sozet M; Gallais L; Lamaignère L
    Rev Sci Instrum; 2019 Jul; 90(7):073001. PubMed ID: 31370447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beam-size effects on the measurement of sub-picosecond intrinsic laser induced damage threshold of dielectric oxide coatings.
    Stehlík M; Wagner F; Zideluns J; Lemarchand F; Lumeau J; Gallais L
    Appl Opt; 2021 Sep; 60(27):8569-8578. PubMed ID: 34612960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A powerful tool for comparing different test procedures to measure the probability and density of laser induced damage on optical materials.
    Lamaignère L; Veinhard M; Tournemenne F; Bouyer C; Parreault R; Courchinoux R; Natoli JY; Rouyer C; Bouillet S
    Rev Sci Instrum; 2019 Dec; 90(12):125102. PubMed ID: 31893816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast Laser Material Damage Simulation-A New Look at an Old Problem.
    Zhang S; Menoni C; Gruzdev V; Chowdhury E
    Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35457967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A theoretical investigation of the laser damage threshold of metal multi-dielectric mirrors for high power ultrashort applications.
    Wang B; Gallais L
    Opt Express; 2013 Jun; 21(12):14698-711. PubMed ID: 23787658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ measurement on ultraviolet dielectric components by a pulsed top-hat beam thermal lens.
    Li B; Martin S; Welsch E
    Appl Opt; 2000 Sep; 39(25):4690-7. PubMed ID: 18350060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Squared Focal Intensity Distributions for Applications in Laser Material Processing.
    Schlutow H; Fuchs U; Müller FA; Gräf S
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34501069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial and Transient Effects during the Amplification of a Picosecond Pulse Beam by a Nanosecond Pump.
    Neuville C; Baccou C; Debayle A; Masson-Laborde PE; Hüller S; Casanova M; Marion D; Loiseau P; Glize K; Labaune C; Depierreux S
    Phys Rev Lett; 2016 Sep; 117(14):145001. PubMed ID: 27740791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.