These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 36221652)

  • 1. Absolute clock synchronization with a single time-correlated photon pair source over a 10 km optical fibre.
    Lee J; Shen L; Utama AN; Kurtsiefer C
    Opt Express; 2022 May; 30(11):18530-18538. PubMed ID: 36221652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Demonstration of quantum synchronization based on second-order quantum coherence of entangled photons.
    Quan R; Zhai Y; Wang M; Hou F; Wang S; Xiang X; Liu T; Zhang S; Dong R
    Sci Rep; 2016 Jul; 6():30453. PubMed ID: 27452276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implementation of field two-way quantum synchronization of distant clocks across a 7 km deployed fiber link.
    Quan R; Hong H; Xue W; Quan H; Zhao W; Xiang X; Liu Y; Cao M; Liu T; Zhang S; Dong R
    Opt Express; 2022 Mar; 30(7):10269-10279. PubMed ID: 35472998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Qubit-Based Clock Synchronization for QKD Systems Using a Bayesian Approach.
    Cochran RD; Gauthier DJ
    Entropy (Basel); 2021 Jul; 23(8):. PubMed ID: 34441128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct generation of photon triplets using cascaded photon-pair sources.
    Hübel H; Hamel DR; Fedrizzi A; Ramelow S; Resch KJ; Jennewein T
    Nature; 2010 Jul; 466(7306):601-3. PubMed ID: 20671705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wide-range wavelength-tunable photon-pair source for characterizing single-photon detectors.
    Shen L; Lee J; Hartanto AW; Tan P; Kurtsiefer C
    Opt Express; 2021 Feb; 29(3):3415-3424. PubMed ID: 33770940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors.
    Honjo T; Takesue H; Kamada H; Nishida Y; Tadanaga O; Asobe M; Inoue K
    Opt Express; 2007 Oct; 15(21):13957-64. PubMed ID: 19550669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Statistics of Computer Clocks and the Design of Synchronization Algorithms.
    Levine J
    J Res Natl Inst Stand Technol; 2020; 125():125008. PubMed ID: 35465392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parametric down-conversion photon-pair source on a nanophotonic chip.
    Guo X; Zou CL; Schuck C; Jung H; Cheng R; Tang HX
    Light Sci Appl; 2017 May; 6(5):e16249. PubMed ID: 30167250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 12-Photon Entanglement and Scalable Scattershot Boson Sampling with Optimal Entangled-Photon Pairs from Parametric Down-Conversion.
    Zhong HS; Li Y; Li W; Peng LC; Su ZE; Hu Y; He YM; Ding X; Zhang W; Li H; Zhang L; Wang Z; You L; Wang XL; Jiang X; Li L; Chen YA; Liu NL; Lu CY; Pan JW
    Phys Rev Lett; 2018 Dec; 121(25):250505. PubMed ID: 30608840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MHz rate and efficient synchronous heralding of single photons at telecom wavelengths.
    Pomarico E; Sanguinetti B; Guerreiro T; Thew R; Zbinden H
    Opt Express; 2012 Oct; 20(21):23846-55. PubMed ID: 23188350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heralded single-photon source utilizing highly nondegenerate, spectrally factorable spontaneous parametric downconversion.
    Kaneda F; Garay-Palmett K; U'Ren AB; Kwiat PG
    Opt Express; 2016 May; 24(10):10733-47. PubMed ID: 27409894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient single-photon pair generation by spontaneous parametric down-conversion in nonlinear plasmonic metasurfaces.
    Jin B; Mishra D; Argyropoulos C
    Nanoscale; 2021 Dec; 13(47):19903-19914. PubMed ID: 34806742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. All-fiber photon-pair source for quantum communications: Improved generation of correlated photons.
    Li X; Chen J; Voss P; Sharping J; Kumar P
    Opt Express; 2004 Aug; 12(16):3737-44. PubMed ID: 19483905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entangled photons from subwavelength nonlinear films.
    Santiago-Cruz T; Sultanov V; Zhang H; Krivitsky LA; Chekhova MV
    Opt Lett; 2021 Feb; 46(3):653-656. PubMed ID: 33528432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Improved Network Time Protocol for Industrial Internet of Things.
    Hou TC; Liu LH; Lan YK; Chen YT; Chu YS
    Sensors (Basel); 2022 Jul; 22(13):. PubMed ID: 35808516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of polarization-entangled photonpairs produced via spontaneous parametric down-conversion within a local-area fiber network: theoretical model and experiment.
    Lim HC; Yoshizawa A; Tsuchida H; Kikuchi K
    Opt Express; 2008 Sep; 16(19):14512-23. PubMed ID: 18794986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-photon N00N states generated by photon subtraction from double photon pairs.
    Kim H; Park HS; Choi SK
    Opt Express; 2009 Oct; 17(22):19720-6. PubMed ID: 19997192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path.
    Bergeron H; Sinclair LC; Swann WC; Nelson CW; Deschênes JD; Baumann E; Giorgetta FR; Coddington I; Newbury NR
    Optica; 2016 Apr; 3(4):441-447. PubMed ID: 29607352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry.
    Zhang Z; Mower J; Englund D; Wong FN; Shapiro JH
    Phys Rev Lett; 2014 Mar; 112(12):120506. PubMed ID: 24724641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.