These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36221670)

  • 1. Method of high-precision spatial distance measurement based on optical-carried microwave interference.
    Hou Y; Kang J; Yue J; Li H; Xue T; Wu B
    Opt Express; 2022 May; 30(11):18762-18771. PubMed ID: 36221670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Method of high-precision free-space distance measurement for noncooperative targets.
    Hou Y; Kang J; Yue J; Li H; Xue T; Wu B
    J Opt Soc Am A Opt Image Sci Vis; 2023 Mar; 40(3):531-537. PubMed ID: 37133029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ranging system based on optical carrier-based microwave interferometry.
    Ding A; Wu B; Hou Y; Yue J
    Appl Opt; 2021 Oct; 60(29):9095-9100. PubMed ID: 34623991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity-enhanced microwave-photonic optical fiber interferometry based on the Vernier effect.
    Zhu C; Huang J
    Opt Express; 2021 May; 29(11):16820-16832. PubMed ID: 34154235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially continuous distributed fiber optic sensing using optical carrier based microwave interferometry.
    Huang J; Lan X; Luo M; Xiao H
    Opt Express; 2014 Jul; 22(15):18757-69. PubMed ID: 25089493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research on Fiber-Optic Optical Coherence Ranging System Based on Laser Frequency Scanning Interferometry.
    Zhou Y; Yuan Y; Su M
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distributed fiber optic sensing with enhanced sensitivity based on microwave-photonic Vernier effect.
    Zhu C; Roman M; Zhuang Y; Huang J
    Opt Lett; 2022 Jun; 47(11):2810-2813. PubMed ID: 35648936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-precision absolute distance and vibration measurement with frequency scanned interferometry.
    Yang HJ; Deibel J; Nyberg S; Riles K
    Appl Opt; 2005 Jul; 44(19):3937-44. PubMed ID: 16004038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanometric Precision Distance Metrology via Hybrid Spectrally Resolved and Homodyne Interferometry in a Single Soliton Frequency Microcomb.
    Jang YS; Liu H; Yang J; Yu M; Kwong DL; Wong CW
    Phys Rev Lett; 2021 Jan; 126(2):023903. PubMed ID: 33512195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave assisted reconstruction of optical interferograms for distributed fiber optic sensing.
    Huang J; Hua L; Lan X; Wei T; Xiao H
    Opt Express; 2013 Jul; 21(15):18152-9. PubMed ID: 23938685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absolute Distance Measurement Using Frequency-Scanning Interferometry Based on Hilbert Phase Subdivision.
    Jiang S; Liu B; Wang H; Zhao B
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31771168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iteration Bayesian Reweighed Algorithm for Optical Carrier-Based Microwave Interferometry Sensing.
    Li Y; Zhou C; Fan D; Liang S; Qian L
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32485971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sinusoidal phase modulating absolute distance measurement interferometer combining frequency-sweeping and multi-wavelength interferometry.
    Zhang S; Xu Z; Chen B; Yan L; Xie J
    Opt Express; 2018 Apr; 26(7):9273-9284. PubMed ID: 29715881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precision improvement in frequency scanning interferometry based on suppression of the magnification effect.
    Shang Y; Lin J; Yang L; Liu Y; Wu T; Zhou Q; Zhu J
    Opt Express; 2020 Feb; 28(4):5822-5834. PubMed ID: 32121797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lateral-shearing, delay-dithering Mach-Zehnder interferometer for spatial coherence measurement.
    Efimov A
    Opt Lett; 2013 Nov; 38(22):4522-5. PubMed ID: 24322064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Method for Measurement of Nonlinearity of Laser Interferometer Based on Optical Frequency Tuning.
    Zhu Z; Fu X; Ren D; Wan Y; Wang J
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29186774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical Fiber Displacement Sensor Based on Microwave Photonics Interferometry.
    Dong H; Liu S; Yang L; Peng J; Cheng K
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30384447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of Distance Measurement Based on Dispersive Interferometry Using Femtosecond Optical Frequency Comb.
    Niu Q; Song M; Zheng J; Jia L; Liu J; Ni L; Nian J; Cheng X; Zhang F; Qu X
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electro-optic modulation of a laser at microwave frequencies for interferometric purposes.
    Specht PE; Jilek BA
    Rev Sci Instrum; 2017 Feb; 88(2):023902. PubMed ID: 28249505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced sensitivity of optical fiber vibration sensor based on radio-frequency Michelson interferometer.
    Deng M; Zhang T; Nan X; Tang Y; Feng D; Guo N; Deng S; Zhu T
    Opt Lett; 2021 Dec; 46(24):6079-6082. PubMed ID: 34913921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.