BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 36221671)

  • 1. Chromatic aberration correction in bi-focal augmented reality display by the multi-layer Pancharatnam-Berry phase lens.
    Ma Y; Zhang W; Liu Y; Tian T; Luo D
    Opt Express; 2022 May; 30(11):18772-18780. PubMed ID: 36221671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aberration-corrected full-color holographic augmented reality near-eye display using a Pancharatnam-Berry phase lens.
    Nam SW; Moon S; Lee B; Kim D; Lee S; Lee CK; Lee B
    Opt Express; 2020 Oct; 28(21):30836-30850. PubMed ID: 33115076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Augmented reality near-eye display using Pancharatnam-Berry phase lenses.
    Moon S; Lee CK; Nam SW; Jang C; Lee GY; Seo W; Sung G; Lee HS; Lee B
    Sci Rep; 2019 Apr; 9(1):6616. PubMed ID: 31036828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correcting the wavelength-induced phase deviation of Pancharatnam-Berry lenses.
    Luo Z; Zou J; Zhao E; Rao Y; Wu ST
    Opt Express; 2022 Sep; 30(20):36644-36650. PubMed ID: 36258588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colorful multi-plane augmented reality display with dynamically tunable reflective Pancharatnam-Berry phase lens.
    Yan X; Zhu J; Liu M; Liu Y; Luo D
    Opt Express; 2024 Mar; 32(6):9161-9170. PubMed ID: 38571155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Planar Alvarez tunable lens based on polymetric liquid crystal Pancharatnam-Berry optical elements.
    Chen S; Lin J; He Z; Li Y; Su Y; Wu ST
    Opt Express; 2022 Sep; 30(19):34655-34664. PubMed ID: 36242473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution additive light field near-eye display by switchable Pancharatnam-Berry phase lenses.
    Zhan T; Lee YH; Wu ST
    Opt Express; 2018 Feb; 26(4):4863-4872. PubMed ID: 29475331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compensation of color breaking in bi-focal depth-switchable integral floating augmented reality display with a geometrical phase lens.
    Choi HJ; Park Y; Lee H; Joo KI; Lee TH; Hong S; Kim HR
    Opt Express; 2020 Nov; 28(24):35548-35560. PubMed ID: 33379668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase Target-Based Calibration of Projector Radial Chromatic Aberration for Color Fringe 3D Measurement Systems.
    Zhang Y; Sun Y; Gao N; Meng Z; Zhang Z
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast-response Pancharatnam-Berry phase optical elements based on polymer-stabilized liquid crystal.
    Li S; Liu Y; Li Y; Liu S; Chen S; Su Y
    Opt Express; 2019 Aug; 27(16):22522-22531. PubMed ID: 31510543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltage-controlled liquid crystal Pancharatnam-Berry phase lens with broadband operation and high photo-stability.
    Wang CT; Tam A; Meng C; Tseng MC; Li G; Kwok HS
    Opt Lett; 2020 Oct; 45(19):5323-5326. PubMed ID: 33001884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cascaded transflective liquid crystal planar lenses enable multi-plane augmented reality.
    Ye X; Fan F; Wen S
    Opt Lett; 2023 Nov; 48(22):5919-5922. PubMed ID: 37966752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadband cholesteric liquid crystal lens for chromatic aberration correction in catadioptric virtual reality optics.
    Li Y; Zhan T; Yang Z; Xu C; LiKamWa PL; Li K; Wu ST
    Opt Express; 2021 Feb; 29(4):6011-6020. PubMed ID: 33726132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ferroelectric liquid crystal Pancharatnam-Berry lens with a fast control of output light's polarization-handedness.
    Ma Y; Yin M; Shan Y; Liu X; Qi S; Chigrinov VG; Kwok HS; Zhao J
    Opt Express; 2021 Aug; 29(17):27472-27480. PubMed ID: 34615162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Digital infrared chromatic aberration correction algorithm for a membrane diffractive lens based on coherent imaging.
    Wu J; Li D; Cui A; Gao J; Zhou K; Liu B
    Appl Opt; 2022 Dec; 61(34):10080-10085. PubMed ID: 36606767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing the resolution of a near-eye display with a Pancharatnam-Berry phase deflector.
    Lee YH; Zhan T; Wu ST
    Opt Lett; 2017 Nov; 42(22):4732-4735. PubMed ID: 29140355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband wide-view Pancharatnam-Berry phase deflector.
    Zou J; Zhan T; Xiong J; Wu ST
    Opt Express; 2020 Feb; 28(4):4921-4927. PubMed ID: 32121722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A high-efficiency dual-wavelength achromatic metalens based on Pancharatnam-Berry phase manipulation.
    Chen J; Zhang F; Li Q; Wu J; Wu L
    Opt Express; 2018 Dec; 26(26):34919-34927. PubMed ID: 30650908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compact full-color augmented reality near-eye display using freeform optics and a holographic optical combiner.
    Shu T; Hu G; Wu R; Li H; Zhang Z; Liu X
    Opt Express; 2022 Aug; 30(18):31714-31727. PubMed ID: 36242248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polarization-independent Pancharatnam-Berry phase lens system.
    Zhan T; Xiong J; Lee YH; Wu ST
    Opt Express; 2018 Dec; 26(26):35026-35033. PubMed ID: 30650917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.