These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Simultaneous wind and rainfall detection by power spectrum analysis using a VAD scanning coherent Doppler lidar. Wei T; Xia H; Hu J; Wang C; Shangguan M; Wang L; Jia M; Dou X Opt Express; 2019 Oct; 27(22):31235-31245. PubMed ID: 31684359 [TBL] [Abstract][Full Text] [Related]
4. A Hardware Implemented Autocorrelation Technique for Estimating Power Spectral Density for Processing Signals from a Doppler Wind Lidar System. Abdelazim S; Santoro D; Arend M; Moshary F; Ahmed S Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30486511 [TBL] [Abstract][Full Text] [Related]
5. Denoising coherent Doppler lidar data based on a U-Net convolutional neural network. Song Y; Han Y; Su Z; Chen C; Sun D; Chen T; Xue X Appl Opt; 2024 Jan; 63(1):275-282. PubMed ID: 38175030 [TBL] [Abstract][Full Text] [Related]
8. Coherent Doppler lidar signal covariance including wind shear and wind turbulence. Frehlich R Appl Opt; 1994 Sep; 33(27):6472-81. PubMed ID: 20941185 [TBL] [Abstract][Full Text] [Related]
9. A reconfigurable all-fiber polarization-diversity coherent Doppler lidar: principles and numerical simulations. Abari CF; Chu X; Michael Hardesty R; Mann J Appl Opt; 2015 Oct; 54(30):8999-9009. PubMed ID: 26560390 [TBL] [Abstract][Full Text] [Related]
10. Pulse Accumulation Approach Based on Signal Phase Estimation for Doppler Wind Lidar. Liang N; Yu X; Lin P; Chang S; Zhang H; Su C; Luo F; Tong S Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610272 [TBL] [Abstract][Full Text] [Related]
11. Iodine-filter-based mobile Doppler lidar to make continuous and full-azimuth-scanned wind measurements: data acquisition and analysis system, data retrieval methods, and error analysis. Wang Z; Liu Z; Liu L; Wu S; Liu B; Li Z; Chu X Appl Opt; 2010 Dec; 49(36):6960-78. PubMed ID: 21173831 [TBL] [Abstract][Full Text] [Related]
13. Fine gust front structure observed by coherent Doppler lidar at Lanzhou Airport (103°49$^{\prime}$ Han Y; Liu J; Sun D; Han F; Zhou A; Zhao R; Xue X; Chen T; Zhen F; Lu Y Appl Opt; 2020 Mar; 59(9):2686-2694. PubMed ID: 32225816 [TBL] [Abstract][Full Text] [Related]
14. 1.5 μm polarization coherent lidar incorporating time-division multiplexing. Wang C; Xia H; Shangguan M; Wu Y; Wang L; Zhao L; Qiu J; Zhang R Opt Express; 2017 Aug; 25(17):20663-20674. PubMed ID: 29041745 [TBL] [Abstract][Full Text] [Related]
15. Wind profiling for a coherent wind Doppler lidar by an auto-adaptive background subtraction approach. Wu Y; Guo P; Chen S; Chen H; Zhang Y Appl Opt; 2017 Apr; 56(10):2705-2713. PubMed ID: 28375232 [TBL] [Abstract][Full Text] [Related]
16. Reduction of phase-induced intensity noise in a fiber-based coherent Doppler lidar using polarization control. Rodrigo PJ; Pedersen C Opt Express; 2010 Mar; 18(5):5320-7. PubMed ID: 20389545 [TBL] [Abstract][Full Text] [Related]
17. Active alignment of receiving beam for coaxial optics in wind sensing coherent Doppler lidar using feedback control based on the processing of heterodyne-detected signal. Ito Y; Imaki M; Tanaka H; Hagio M; Inokuchi H; Kameyama S Appl Opt; 2022 Jan; 61(2):352-361. PubMed ID: 35200869 [TBL] [Abstract][Full Text] [Related]