These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 36221959)
1. Synthesis and Characterization of Catalytically Active Au Core─Pd Shell Nanoparticles Supported on Alumina. Feng Y; Schaefer A; Hellman A; Di M; Härelind H; Bauer M; Carlsson PA Langmuir; 2022 Oct; 38(42):12859-12870. PubMed ID: 36221959 [TBL] [Abstract][Full Text] [Related]
2. Au/Pd core-shell nanoparticles with varied hollow Au cores for enhanced formic acid oxidation. Hsu C; Huang C; Hao Y; Liu F Nanoscale Res Lett; 2013 Mar; 8(1):113. PubMed ID: 23452438 [TBL] [Abstract][Full Text] [Related]
3. Seed-assisted synthesis of Pd@Au core-shell nanotetrapods and their optical and catalytic properties. Zhao R; Gong M; Zhu H; Chen Y; Tang Y; Lu T Nanoscale; 2014 Aug; 6(15):9273-8. PubMed ID: 24986103 [TBL] [Abstract][Full Text] [Related]
4. Spherical Sandwich Au@Pd@UIO-67/Pt@UIO- n ( n = 66, 67, 69) Core-Shell Catalysts: Zr-Based Metal-Organic Frameworks for Effectively Regulating the Reverse Water-Gas Shift Reaction. Xu H; Luo X; Wang J; Su Y; Zhao X; Li Y ACS Appl Mater Interfaces; 2019 Jun; 11(22):20291-20297. PubMed ID: 31070880 [TBL] [Abstract][Full Text] [Related]
5. Change of composition and surface plasmon resonance of Pd/Au core/shell nanoparticles triggered by CO adsorption. Ouvrard A; Alyabyeva N; Zakaria AM; Yuan K; Dablemont C; Lazzari R; Charra F; Bourguignon B J Chem Phys; 2024 Sep; 161(12):. PubMed ID: 39344890 [TBL] [Abstract][Full Text] [Related]
6. Preferential CO oxidation in hydrogen: reactivity of core-shell nanoparticles. Nilekar AU; Alayoglu S; Eichhorn B; Mavrikakis M J Am Chem Soc; 2010 Jun; 132(21):7418-28. PubMed ID: 20459102 [TBL] [Abstract][Full Text] [Related]
7. A general and high-yield galvanic displacement approach to Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells and enhanced electrocatalytic performances. Kuai L; Geng B; Wang S; Sang Y Chemistry; 2012 Jul; 18(30):9423-9. PubMed ID: 22714952 [TBL] [Abstract][Full Text] [Related]
8. The Enhancement of CO Oxidation Performance and Stability in SO He Q; Wang X; Liu Y; Kong W; Ren S; Liang Y; Tang M; Zhou S; Dong Y Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241390 [TBL] [Abstract][Full Text] [Related]
9. Spherical core-shell alumina support particles for model platinum catalysts. Geerts L; Geerts-Claes H; Skorikov A; Vermeersch J; Vanbutsele G; Galvita V; Constales D; Chandran CV; Radhakrishnan S; Seo JW; Breynaert E; Bals S; Sree SP; Martens JA Nanoscale; 2021 Feb; 13(7):4221-4232. PubMed ID: 33586739 [TBL] [Abstract][Full Text] [Related]
10. Electronic structure and catalytic activity of exsolved Ni on Pd core-shell nanoparticles. Kumar P; Monder DS Phys Chem Chem Phys; 2022 Dec; 24(48):29801-29816. PubMed ID: 36468269 [TBL] [Abstract][Full Text] [Related]
11. Direct synthesis of hydrogen peroxide from H2 and O2 using supported Au-Pd catalysts. Edwards JK; Carley AF; Herzing AA; Kiely CJ; Hutchings GJ Faraday Discuss; 2008; 138():225-39; discussion 317-35, 433-4. PubMed ID: 18447018 [TBL] [Abstract][Full Text] [Related]
12. One-pot synthesis of Au-M@SiO Hao J; Liu B; Maenosono S; Yang J Sci Rep; 2022 May; 12(1):7615. PubMed ID: 35538150 [TBL] [Abstract][Full Text] [Related]
13. Influence of the Pd : Bi ratio on Pd-Bi/Al Sandu MP; Kovtunov MA; Baturin VS; Oganov AR; Kurzina IA Phys Chem Chem Phys; 2021 Jul; 23(27):14889-14897. PubMed ID: 34223584 [TBL] [Abstract][Full Text] [Related]
14. Enhanced Fatty Acid Photodecarboxylation over Bimetallic Au-Pd Core-Shell Nanoparticles Deposited on TiO Yang H; Tian L; Grirrane A; García-Baldoví A; Hu J; Sastre G; Hu C; García H ACS Catal; 2023 Nov; 13(22):15143-15154. PubMed ID: 38352955 [TBL] [Abstract][Full Text] [Related]
15. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction. Senanayake SD; Stacchiola D; Rodriguez JA Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528 [TBL] [Abstract][Full Text] [Related]
16. Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions. Chen D; Li C; Liu H; Ye F; Yang J Sci Rep; 2015 Jul; 5():11949. PubMed ID: 26144550 [TBL] [Abstract][Full Text] [Related]
17. CO oxidation on colloidal Au(0.80)Pd(0.20)-Fe(x)O(y) dumbbell nanocrystals. George C; Genovese A; Casu A; Prato M; Povia M; Manna L; Montanari T Nano Lett; 2013 Feb; 13(2):752-7. PubMed ID: 23297817 [TBL] [Abstract][Full Text] [Related]
18. Unusual Activity Trend for CO Oxidation on Pd(x)Au(140-x)@Pt Core@Shell Nanoparticle Electrocatalysts. Luo L; Zhang L; Henkelman G; Crooks RM J Phys Chem Lett; 2015 Jul; 6(13):2562-8. PubMed ID: 26266734 [TBL] [Abstract][Full Text] [Related]
19. The Effect of Zinc Oxide Addition to Alumina-Supported Gold Catalyst in Low Temperature Carbon Monoxide Oxidation. Kim KJ; Chang CH; Ahn HG J Nanosci Nanotechnol; 2015 Jan; 15(1):60-4. PubMed ID: 26328421 [TBL] [Abstract][Full Text] [Related]
20. Systematic Control of Redox Properties and Oxygen Reduction Reactivity through Colloidal Ligand-Exchange Deposition of Pd on Au. Huang X; Shumski AJ; Zhang X; Li CW J Am Chem Soc; 2018 Jul; 140(28):8918-8923. PubMed ID: 29927578 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]