These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36222139)

  • 1. Deciphering the regulatory syntax of genomic DNA with deep learning.
    Lal A
    J Biosci; 2022; 47():. PubMed ID: 36222139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide prediction of cis-regulatory regions using supervised deep learning methods.
    Li Y; Shi W; Wasserman WW
    BMC Bioinformatics; 2018 May; 19(1):202. PubMed ID: 29855387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The long-range interaction landscape of gene promoters.
    Sanyal A; Lajoie BR; Jain G; Dekker J
    Nature; 2012 Sep; 489(7414):109-13. PubMed ID: 22955621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of different negative training data on regulatory sequence predictions.
    Krützfeldt LM; Schubach M; Kircher M
    PLoS One; 2020; 15(12):e0237412. PubMed ID: 33259518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating distal and proximal information to predict gene expression via a densely connected convolutional neural network.
    Zeng W; Wang Y; Jiang R
    Bioinformatics; 2020 Jan; 36(2):496-503. PubMed ID: 31318408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. iEnhancer-GAN: A Deep Learning Framework in Combination with Word Embedding and Sequence Generative Adversarial Net to Identify Enhancers and Their Strength.
    Yang R; Wu F; Zhang C; Zhang L
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33808317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determinants of enhancer and promoter activities of regulatory elements.
    Andersson R; Sandelin A
    Nat Rev Genet; 2020 Feb; 21(2):71-87. PubMed ID: 31605096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The identification of cis-regulatory elements: A review from a machine learning perspective.
    Li Y; Chen CY; Kaye AM; Wasserman WW
    Biosystems; 2015 Dec; 138():6-17. PubMed ID: 26499213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ReFeaFi: Genome-wide prediction of regulatory elements driving transcription initiation.
    Umarov R; Li Y; Arakawa T; Takizawa S; Gao X; Arner E
    PLoS Comput Biol; 2021 Sep; 17(9):e1009376. PubMed ID: 34491989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conserved and non-conserved enhancers direct tissue specific transcription in ancient germ layer specific developmental control genes.
    Chatterjee S; Bourque G; Lufkin T
    BMC Dev Biol; 2011 Oct; 11():63. PubMed ID: 22011226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of cis regulatory features in the embryonic zebrafish genome through large-scale profiling of H3K4me1 and H3K4me3 binding sites.
    Aday AW; Zhu LJ; Lakshmanan A; Wang J; Lawson ND
    Dev Biol; 2011 Sep; 357(2):450-62. PubMed ID: 21435340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulatory regions in DNA: promoters, enhancers, silencers, and insulators.
    Riethoven JJ
    Methods Mol Biol; 2010; 674():33-42. PubMed ID: 20827584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of deep learning in genomics.
    Liu J; Li J; Wang H; Yan J
    Sci China Life Sci; 2020 Dec; 63(12):1860-1878. PubMed ID: 33051704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The accessible chromatin landscape of the human genome.
    Thurman RE; Rynes E; Humbert R; Vierstra J; Maurano MT; Haugen E; Sheffield NC; Stergachis AB; Wang H; Vernot B; Garg K; John S; Sandstrom R; Bates D; Boatman L; Canfield TK; Diegel M; Dunn D; Ebersol AK; Frum T; Giste E; Johnson AK; Johnson EM; Kutyavin T; Lajoie B; Lee BK; Lee K; London D; Lotakis D; Neph S; Neri F; Nguyen ED; Qu H; Reynolds AP; Roach V; Safi A; Sanchez ME; Sanyal A; Shafer A; Simon JM; Song L; Vong S; Weaver M; Yan Y; Zhang Z; Zhang Z; Lenhard B; Tewari M; Dorschner MO; Hansen RS; Navas PA; Stamatoyannopoulos G; Iyer VR; Lieb JD; Sunyaev SR; Akey JM; Sabo PJ; Kaul R; Furey TS; Dekker J; Crawford GE; Stamatoyannopoulos JA
    Nature; 2012 Sep; 489(7414):75-82. PubMed ID: 22955617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic approaches for the discovery of CFTR regulatory elements.
    Ott CJ; Harris A
    Transcription; 2011; 2(1):23-7. PubMed ID: 21326906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Taking promoters out of enhancers in sequence based predictions of tissue-specific mammalian enhancers.
    Herman-Izycka J; Wlasnowolski M; Wilczynski B
    BMC Med Genomics; 2017 May; 10(Suppl 1):34. PubMed ID: 28589862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting functional variants in enhancer and promoter elements using RegulomeDB.
    Dong S; Boyle AP
    Hum Mutat; 2019 Sep; 40(9):1292-1298. PubMed ID: 31228310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-coding transcription at cis-regulatory elements: computational and experimental approaches.
    Simonatto M; Barozzi I; Natoli G
    Methods; 2013 Sep; 63(1):66-75. PubMed ID: 23542771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DeepTACT: predicting 3D chromatin contacts via bootstrapping deep learning.
    Li W; Wong WH; Jiang R
    Nucleic Acids Res; 2019 Jun; 47(10):e60. PubMed ID: 30869141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local Epigenomic Data are more Informative than Local Genome Sequence Data in Predicting Enhancer-Promoter Interactions Using Neural Networks.
    Xiao M; Zhuang Z; Pan W
    Genes (Basel); 2019 Dec; 11(1):. PubMed ID: 31905774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.