These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 36222183)

  • 1. Influence of 4 weeks of downhill running on calcium sensitivity of rat single muscle fibers.
    Hubbard EF; Hinks A; Mashouri P; Power GA
    Physiol Rep; 2022 Oct; 10(19):e15450. PubMed ID: 36222183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modifiability of residual force depression in single muscle fibers following uphill and downhill training in rats.
    Mashouri P; Chen J; Noonan AM; Brown SHM; Power GA
    Physiol Rep; 2021 Jan; 9(2):e14725. PubMed ID: 33502825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eccentric exercise-induced morphological changes in the membrane systems involved in excitation-contraction coupling in rat skeletal muscle.
    Takekura H; Fujinami N; Nishizawa T; Ogasawara H; Kasuga N
    J Physiol; 2001 Jun; 533(Pt 2):571-83. PubMed ID: 11389213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleotide-dependent contractile properties of Ca(2+)-activated fast and slow skeletal muscle fibers.
    Wahr PA; Cantor HC; Metzger JM
    Biophys J; 1997 Feb; 72(2 Pt 1):822-34. PubMed ID: 9017207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium-activated force of human muscle fibers following a standardized eccentric contraction.
    Choi SJ; Widrick JJ
    Am J Physiol Cell Physiol; 2010 Dec; 299(6):C1409-17. PubMed ID: 20810908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sarcomere length dependence of the rate of tension redevelopment and submaximal tension in rat and rabbit skinned skeletal muscle fibres.
    McDonald KS; Wolff MR; Moss RL
    J Physiol; 1997 Jun; 501 ( Pt 3)(Pt 3):607-21. PubMed ID: 9218220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rate of force development is Ca
    Mazara N; Zwambag DP; Noonan AM; Weersink E; Brown SHM; Power GA
    Exp Gerontol; 2021 Jul; 150():111348. PubMed ID: 33862138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between short-range stiffness and yielding in type-identified, chemically skinned muscle fibers from the cat triceps surae muscles.
    Malamud JG; Godt RE; Nichols TR
    J Neurophysiol; 1996 Oct; 76(4):2280-9. PubMed ID: 8899603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle tenderness and peak torque changes after downhill running following a prior bout of isokinetic eccentric exercise.
    Eston RG; Finney S; Baker S; Baltzopoulos V
    J Sports Sci; 1996 Aug; 14(4):291-9. PubMed ID: 8887208
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Dutka TL; Mollica JP; Lamboley CR; Weerakkody VC; Greening DW; Posterino GS; Murphy RM; Lamb GD
    Am J Physiol Cell Physiol; 2017 Mar; 312(3):C316-C327. PubMed ID: 27974300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of hypothyroidism on single fibers of the rat soleus muscle.
    Norenberg KM; Herb RA; Dodd SL; Powers SK
    Can J Physiol Pharmacol; 1996 Apr; 74(4):362-7. PubMed ID: 8828882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force-velocity and power characteristics of rat soleus muscle fibers after hindlimb suspension.
    McDonald KS; Blaser CA; Fitts RH
    J Appl Physiol (1985); 1994 Oct; 77(4):1609-16. PubMed ID: 7836176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single muscle fiber adaptations with marathon training.
    Trappe S; Harber M; Creer A; Gallagher P; Slivka D; Minchev K; Whitsett D
    J Appl Physiol (1985); 2006 Sep; 101(3):721-7. PubMed ID: 16614353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rats genetically selected for low and high aerobic capacity exhibit altered soleus muscle myofilament functions.
    Biesiadecki BJ; Brotto MA; Brotto LS; Koch LG; Britton SL; Nosek TM; Jin JP
    Am J Physiol Cell Physiol; 2020 Feb; 318(2):C422-C429. PubMed ID: 31875694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Velocity, force, power, and Ca2+ sensitivity of fast and slow monkey skeletal muscle fibers.
    Fitts RH; Bodine SC; Romatowski JG; Widrick JJ
    J Appl Physiol (1985); 1998 May; 84(5):1776-87. PubMed ID: 9572830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age-related reduction in single muscle fiber calcium sensitivity is associated with decreased muscle power in men and women.
    Straight CR; Ades PA; Toth MJ; Miller MS
    Exp Gerontol; 2018 Feb; 102():84-92. PubMed ID: 29247790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stretch-shortening cycle exercises: an effective training paradigm to enhance power output of human single muscle fibers.
    Malisoux L; Francaux M; Nielens H; Theisen D
    J Appl Physiol (1985); 2006 Mar; 100(3):771-9. PubMed ID: 16322375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative measurement of resting skeletal muscle [Ca2+]i following acute and long-term downhill running exercise in mice.
    Lynch GS; Fary CJ; Williams DA
    Cell Calcium; 1997 Nov; 22(5):373-83. PubMed ID: 9448944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional properties of human muscle fibers after short-term resistance exercise training.
    Widrick JJ; Stelzer JE; Shoepe TC; Garner DP
    Am J Physiol Regul Integr Comp Physiol; 2002 Aug; 283(2):R408-16. PubMed ID: 12121854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Force-calcium relationship depends on myosin heavy chain and troponin isoforms in rat diaphragm muscle fibers.
    Geiger PC; Cody MJ; Sieck GC
    J Appl Physiol (1985); 1999 Nov; 87(5):1894-900. PubMed ID: 10562634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.