These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 36222376)

  • 1. In situ Observation of Structural Evolution and Phase Engineering of Amorphous Materials during Crystal Nucleation.
    Han X; Wu G; Ge Y; Yang S; Rao D; Guo Z; Zhang Y; Yan M; Zhang H; Gu L; Wu Y; Lin Y; Zhang H; Hong X
    Adv Mater; 2022 Dec; 34(50):e2206994. PubMed ID: 36222376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ dynamic HR-TEM and EELS study on phase transitions of Ge2Sb2Te5 chalcogenides.
    Song SA; Zhang W; Sik Jeong H; Kim JG; Kim YJ
    Ultramicroscopy; 2008 Oct; 108(11):1408-19. PubMed ID: 18657907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymorphism, crystal nucleation and growth in the phase-field crystal model in 2D and 3D.
    Tóth GI; Tegze G; Pusztai T; Tóth G; Gránásy L
    J Phys Condens Matter; 2010 Sep; 22(36):364101. PubMed ID: 21386517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ru Octahedral Nanocrystals with a Face-Centered Cubic Structure, {111} Facets, Thermal Stability up to 400 °C, and Enhanced Catalytic Activity.
    Zhao M; Chen Z; Lyu Z; Hood ZD; Xie M; Vara M; Chi M; Xia Y
    J Am Chem Soc; 2019 May; 141(17):7028-7036. PubMed ID: 30973711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase-Controlled Ruthenium Nanocrystals on Colloidal Polydopamine Supports and Their Catalytic Behaviors in Aerobic Oxidation Reactions.
    Wang Z; Wang H
    ACS Appl Mater Interfaces; 2023 Aug; 15(30):36676-36687. PubMed ID: 37486213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Situ Atomic-Scale Study of Particle-Mediated Nucleation and Growth in Amorphous Bismuth to Nanocrystal Phase Transformation.
    Li J; Chen J; Wang H; Chen N; Wang Z; Guo L; Deepak FL
    Adv Sci (Weinh); 2018 Jun; 5(6):1700992. PubMed ID: 29938178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multistep nucleation of nanocrystals in aqueous solution.
    Loh ND; Sen S; Bosman M; Tan SF; Zhong J; Nijhuis CA; Král P; Matsudaira P; Mirsaidov U
    Nat Chem; 2017 Jan; 9(1):77-82. PubMed ID: 27995918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amorphous-Phase-Mediated Crystallization of Ni Nanocrystals Revealed by High-Resolution Liquid-Phase Electron Microscopy.
    Yang J; Koo J; Kim S; Jeon S; Choi BK; Kwon S; Kim J; Kim BH; Lee WC; Lee WB; Lee H; Hyeon T; Ercius P; Park J
    J Am Chem Soc; 2019 Jan; 141(2):763-768. PubMed ID: 30608684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Imaging of the Kinetic Crystallization Pathway: Simulation and Liquid-Phase Transmission Electron Microscopy Observations.
    Xu Z; Ou Z
    Materials (Basel); 2023 Mar; 16(5):. PubMed ID: 36903141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atom-Resolved Investigation on Dynamic Nucleation and Growth of Platinum Nanocrystals.
    Ye H; Yang F; Sun Y; Wang R
    Small Methods; 2022 Jun; 6(6):e2200171. PubMed ID: 35324080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revealing Surface Restraint-Induced Hexagonal Pd Nanocrystals via
    You R; Wu Z; Yu J; Wang F; Chen S; Han ZK; Yuan W; Yang H; Wang Y
    Nano Lett; 2022 Jun; 22(11):4333-4339. PubMed ID: 35584407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Situ Atomic-Scale Observation of Droplet Coalescence Driven Nucleation and Growth at Liquid/Solid Interfaces.
    Li J; Wang Z; Deepak FL
    ACS Nano; 2017 Jun; 11(6):5590-5597. PubMed ID: 28538094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallization within Intermediate Amorphous Phases Determines the Polycrystallinity of Nanoparticles from Coprecipitation.
    Freitas AP; Ramamoorthy RK; Durelle M; Larquet E; Maurin I; Testard F; Chevallard C; Gacoin T; Carriere D
    Nano Lett; 2022 Jan; 22(1):29-35. PubMed ID: 34928165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal Structure Control of Binary and Ternary Solid-Solution Alloy Nanoparticles with a Face-Centered Cubic or Hexagonal Close-Packed Phase.
    Zhang Q; Kusada K; Wu D; Yamamoto T; Toriyama T; Matsumura S; Kawaguchi S; Kubota Y; Kitagawa H
    J Am Chem Soc; 2022 Mar; 144(9):4224-4232. PubMed ID: 35196005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fcc
    Sanchez-Burgos I; Sanz E; Vega C; Espinosa JR
    Phys Chem Chem Phys; 2021 Sep; 23(35):19611-19626. PubMed ID: 34524277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneous nucleation of/on nanoparticles: a density functional study using the phase-field crystal model.
    Gránásy L; Podmaniczky F; Tóth GI; Tegze G; Pusztai T
    Chem Soc Rev; 2014 Apr; 43(7):2159-73. PubMed ID: 24399153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic Phase Diagram for Nucleation and Growth of Competing Crystal Polymorphs in Charged Colloids.
    Gispen W; Dijkstra M
    Phys Rev Lett; 2022 Aug; 129(9):098002. PubMed ID: 36083657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleation of crystals that are mixed composites of all three polymorphs in the Gaussian core model.
    Mithen JP; Callison AJ; Sear RP
    J Chem Phys; 2015 Jun; 142(22):224505. PubMed ID: 26071718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Nitrogen Doping on the Crystallization Kinetics of Ge
    Luong MA; Cherkashin N; Pecassou B; Sabbione C; Mazen F; Claverie A
    Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34209198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal Phase Engineering of Ultrathin Alloy Nanostructures for Highly Efficient Electroreduction of Nitrate to Ammonia.
    Wang Y; Hao F; Sun M; Liu MT; Zhou J; Xiong Y; Ye C; Wang X; Liu F; Wang J; Lu P; Ma Y; Yin J; Chen HC; Zhang Q; Gu L; Chen HM; Huang B; Fan Z
    Adv Mater; 2024 Apr; 36(14):e2313548. PubMed ID: 38279631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.