BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 36222427)

  • 1. The 'emodin family' of fungal natural products-amalgamating a century of research with recent genomics-based advances.
    de Mattos-Shipley KMJ; Simpson TJ
    Nat Prod Rep; 2023 Jan; 40(1):174-201. PubMed ID: 36222427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anthrol reductases: discovery, role in biosynthesis and applications in natural product syntheses.
    Rajput A; Manna T; Husain SM
    Nat Prod Rep; 2023 Oct; 40(10):1672-1686. PubMed ID: 37475701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tautomers of anthrahydroquinones: enzymatic reduction and implications for chrysophanol, monodictyphenone, and related xanthone biosyntheses.
    Schätzle MA; Husain SM; Ferlaino S; Müller M
    J Am Chem Soc; 2012 Sep; 134(36):14742-5. PubMed ID: 22909031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterisation of the biosynthetic pathway to agnestins A and B reveals the reductive route to chrysophanol in fungi.
    Szwalbe AJ; Williams K; Song Z; de Mattos-Shipley K; Vincent JL; Bailey AM; Willis CL; Cox RJ; Simpson TJ
    Chem Sci; 2019 Jan; 10(1):233-238. PubMed ID: 30746079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic and biosynthetic studies of the fungal prenylated xanthone shamixanthone and related metabolites in Aspergillus spp. revisited.
    Simpson TJ
    Chembiochem; 2012 Jul; 13(11):1680-8. PubMed ID: 22730213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidation of cladofulvin biosynthesis reveals a cytochrome P450 monooxygenase required for anthraquinone dimerization.
    Griffiths S; Mesarich CH; Saccomanno B; Vaisberg A; De Wit PJ; Cox R; Collemare J
    Proc Natl Acad Sci U S A; 2016 Jun; 113(25):6851-6. PubMed ID: 27274078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic Characterization of Neosartorin Biosynthesis Provides Insight into Heterodimeric Natural Product Generation.
    Matsuda Y; Gotfredsen CH; Larsen TO
    Org Lett; 2018 Nov; 20(22):7197-7200. PubMed ID: 30394754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthetic machineries of anthraquinones and bisanthraquinones in Talaromyces islandicus.
    Fukaya M; Ozaki T; Minami A; Oikawa H
    Biosci Biotechnol Biochem; 2022 Mar; 86(4):435-443. PubMed ID: 35108363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthetic Pathways of Dimeric Natural Products Containing Bisanthraquinone and Related Xanthones.
    Yuan Z; Xu H; Zhang Y; Rao Y
    Chembiochem; 2023 Mar; 24(5):e202200586. PubMed ID: 36342352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classic fungal natural products in the genomic age: the molecular legacy of Harold Raistrick.
    Schor R; Cox R
    Nat Prod Rep; 2018 Mar; 35(3):230-256. PubMed ID: 29537034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic effects of anthraquinones on the purgative activity of rhein anthrone in mice.
    Yagi T; Yamauchi K
    J Pharm Pharmacol; 1999 Jan; 51(1):93-5. PubMed ID: 10197424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-based deletion analysis reveals the prenyl xanthone biosynthesis pathway in Aspergillus nidulans.
    Sanchez JF; Entwistle R; Hung JH; Yaegashi J; Jain S; Chiang YM; Wang CC; Oakley BR
    J Am Chem Soc; 2011 Mar; 133(11):4010-7. PubMed ID: 21351751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xanthones of Lichen Source: A 2016 Update.
    Le Pogam P; Boustie J
    Molecules; 2016 Mar; 21(3):294. PubMed ID: 26950106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the Aspergillus nidulans monodictyphenone gene cluster.
    Chiang YM; Szewczyk E; Davidson AD; Entwistle R; Keller NP; Wang CC; Oakley BR
    Appl Environ Microbiol; 2010 Apr; 76(7):2067-74. PubMed ID: 20139316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linking secondary metabolites to biosynthesis genes in the fungal endophyte Cyanodermella asteris: The anti-cancer bisanthraquinone skyrin.
    Jahn L; Schafhauser T; Wibberg D; Rückert C; Winkler A; Kulik A; Weber T; Flor L; van Pée KH; Kalinowski J; Ludwig-Müller J; Wohlleben W
    J Biotechnol; 2017 Sep; 257():233-239. PubMed ID: 28647529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secondary metabolites of Hülle cells mediate protection of fungal reproductive and overwintering structures against fungivorous animals.
    Liu L; Sasse C; Dirnberger B; Valerius O; Fekete-Szücs E; Harting R; Nordzieke DE; Pöggeler S; Karlovsky P; Gerke J; Braus GH
    Elife; 2021 Oct; 10():. PubMed ID: 34635205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolites from Aspergillus versicolor, an endolichenic fungus from the lichen Lobaria retigera.
    Dou Y; Wang X; Jiang D; Wang H; Jiao Y; Lou H; Wang X
    Drug Discov Ther; 2014 Apr; 8(2):84-8. PubMed ID: 24815583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xanthones: A Class of Heterocyclic Compounds with Anticancer Potential.
    Gul S; Aslam K; Pirzada Q; Rauf A; Khalil AA; Semwal P; Bawazeer S; Al-Awthan YS; Bahattab OS; Al Duais MA; Thiruvengadam M
    Curr Top Med Chem; 2022; 22(23):1930-1949. PubMed ID: 36056870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent insights into the biosynthesis and biological activities of natural xanthones.
    El-Seedi HR; El-Barbary MA; El-Ghorab DM; Bohlin L; Borg-Karlson AK; Göransson U; Verpoorte R
    Curr Med Chem; 2010; 17(9):854-901. PubMed ID: 20156171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The isolation of secondary metabolites from Rheum ribes L. and the synthesis of new semi-synthetic anthraquinones: Isolation, synthesis and biological activity.
    Gecibesler IH; Disli F; Bayindir S; Toprak M; Tufekci AR; Sahin Yaglıoglu A; Altun M; Kocak A; Demirtas I; Adem S
    Food Chem; 2021 Apr; 342():128378. PubMed ID: 33508903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.