BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36222724)

  • 1. Large-Scale Surveys of Blackleg of Oilseed Rape (
    Deng Y; Li JC; Lyv X; Xu JW; Wu MD; Zhang J; Yang L; Li GQ
    Plant Dis; 2023 May; 107(5):1408-1417. PubMed ID: 36222724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First report of Leptosphaeria biglobosa 'canadensis' causing blackleg on oilseed rape (Brassica napus) in China.
    Luo T; Li G; Yang L
    Plant Dis; 2021 Mar; ():. PubMed ID: 33754864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective control of Leptosphaeria maculans increases importance of L. biglobosa as a cause of phoma stem canker epidemics on oilseed rape.
    Huang YJ; Sidique SNM; Karandeni Dewage CS; Gajula LH; Mitrousia GK; Qi A; West JS; Fitt BD
    Pest Manag Sci; 2024 May; 80(5):2405-2415. PubMed ID: 36285624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Water Flooding on Survival of Leptosphaeria biglobosa 'brassicae' in Stubble of Oilseed Rape (Brassica napus) in Central China.
    Cai X; Zhang J; Wu M; Jiang D; Li G; Yang L
    Plant Dis; 2015 Oct; 99(10):1426-1433. PubMed ID: 30690998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic Diversity and Population Structure of
    Zhou K; Zhang J; Yang L; Li G; Wu M
    J Fungi (Basel); 2023 Nov; 9(11):. PubMed ID: 37998897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-inoculation timing affects the interspecific interactions between phoma stem canker pathogens Leptosphaeria maculans and Leptosphaeria biglobosa.
    Bingol E; Qi A; Karandeni-Dewage C; Ritchie F; Fitt BDL; Huang YJ
    Pest Manag Sci; 2024 May; 80(5):2443-2452. PubMed ID: 37759352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of fungicides on in vitro spore germination and mycelial growth of the phytopathogens Leptosphaeria maculans and L. biglobosa (phoma stem canker of oilseed rape).
    Eckert MR; Rossall S; Selley A; Fitt BD
    Pest Manag Sci; 2010 Apr; 66(4):396-405. PubMed ID: 20013877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LAMP Detection and Identification of the Blackleg Pathogen
    Du R; Huang Y; Zhang J; Yang L; Wu M; Li GQ
    Plant Dis; 2021 Oct; 105(10):3192-3200. PubMed ID: 33560882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effectiveness of
    Mitrousia GK; Huang YJ; Qi A; Sidique SNM; Fitt BDL
    Plant Pathol; 2018 Aug; 67(6):1339-1353. PubMed ID: 30166691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mycovirus-Induced Hypervirulence of
    Shah UA; Kotta-Loizou I; Fitt BDL; Coutts RHA
    Mol Plant Microbe Interact; 2020 Jan; 33(1):98-107. PubMed ID: 31652089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of environmentally stable QTL for resistance against Leptosphaeria maculans in oilseed rape (Brassica napus).
    Huang YJ; Jestin C; Welham SJ; King GJ; Manzanares-Dauleux MJ; Fitt BD; Delourme R
    Theor Appl Genet; 2016 Jan; 129(1):169-80. PubMed ID: 26518572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid detection of the pathogenic fungi causing blackleg of Brassica napus using a portable real-time fluorescence detector.
    Lei R; Kong J; Qiu Y; Chen N; Zhu S; Wang X; Wu P
    Food Chem; 2019 Aug; 288():57-67. PubMed ID: 30902315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oilseed rape (Brassica napus) resistance to growth of Leptosphaeria maculans in leaves of young plants contributes to quantitative resistance in stems of adult plants.
    Huang YJ; Paillard S; Kumar V; King GJ; Fitt BDL; Delourme R
    PLoS One; 2019; 14(9):e0222540. PubMed ID: 31513677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient qPCR estimation and discrimination of airborne inoculum of Leptosphaeria maculans and L. biglobosa, the causal organisms of phoma leaf spotting and stem canker of oilseed rape.
    Kaczmarek J; West JS; King KM; Canning GGM; Latunde-Dada AO; Huang YJ; Fitt BDL; Jedryczka M
    Pest Manag Sci; 2024 May; 80(5):2453-2460. PubMed ID: 37759372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The stem canker (blackleg) fungus, Leptosphaeria maculans, enters the genomic era.
    Rouxel T; Balesdent MH
    Mol Plant Pathol; 2005 May; 6(3):225-41. PubMed ID: 20565653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Status and advances in mining for blackleg (Leptosphaeria maculans) quantitative resistance (QR) in oilseed rape (Brassica napus).
    Amas J; Anderson R; Edwards D; Cowling W; Batley J
    Theor Appl Genet; 2021 Oct; 134(10):3123-3145. PubMed ID: 34104999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular and phenotypic characterization of near isogenic lines at QTL for quantitative resistance to Leptosphaeria maculans in oilseed rape (Brassica napus L.).
    Delourme R; Piel N; Horvais R; Pouilly N; Domin C; Vallée P; Falentin C; Manzanares-Dauleux MJ; Renard M
    Theor Appl Genet; 2008 Nov; 117(7):1055-67. PubMed ID: 18696043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leptosphaeria biglobosa inhibits the production of sirodesmin PL by L. maculans.
    Fortune JA; Bingol E; Qi A; Baker D; Ritchie F; Karandeni Dewage CS; Fitt BDL; Huang YJ
    Pest Manag Sci; 2024 May; 80(5):2416-2425. PubMed ID: 36327145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome wide identification of the immunophilin gene family in Leptosphaeria maculans: a causal agent of Blackleg disease in Oilseed Rape (Brassica napus).
    Singh K; Zouhar M; Mazakova J; Rysanek P
    OMICS; 2014 Oct; 18(10):645-57. PubMed ID: 25259854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced pathogenicity of Leptosphaeria maculans Pycnidiospores from paired co-inoculation of Brassica napus cotyledons with ascospores.
    Li H; Tapper N; Dean N; Barbetti M; Sivasithamparam K
    Ann Bot; 2006 Jun; 97(6):1151-6. PubMed ID: 16533831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.