These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36223416)

  • 21. Symposium review: Understanding the role of the rumen microbiome in enteric methane mitigation and productivity in dairy cows.
    Pitta D; Indugu N; Narayan K; Hennessy M
    J Dairy Sci; 2022 Oct; 105(10):8569-8585. PubMed ID: 35346473
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Elucidation of the methanogenic potential from coalbed microbial communities amended with volatile fatty acids.
    Lyles CN; Parisi VA; Beasley WH; Van Nostrand JD; Zhou J; Suflita JM
    FEMS Microbiol Ecol; 2017 Apr; 93(4):. PubMed ID: 28369331
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of methanogenesis and carbon metabolism in Methanosarcina sp. by cyanide.
    Smith MR; Lequerica JL; Hart MR
    J Bacteriol; 1985 Apr; 162(1):67-71. PubMed ID: 3980448
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Methane formation and methane oxidation by methanogenic bacteria.
    Zehnder AJ; Brock TD
    J Bacteriol; 1979 Jan; 137(1):420-32. PubMed ID: 762019
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mass-spectrometric studies of the interrelations among hydrogenase, carbon monoxide dehydrogenase, and methane-forming activities in pure and mixed cultures of Desulfovibrio vulgaris, Desulfovibrio desulfuricans, and Methanosarcina barkeri.
    Rajagopal BS; Lespinat PA; Fauque G; LeGall J; Berlier YM
    Appl Environ Microbiol; 1989 Sep; 55(9):2123-9. PubMed ID: 2508553
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The variation of microorganisms and organics during methane production from lignite under an electric field.
    Zhang J; Chen C; Guo H; Huang Z; Urynowicz M
    Biotechnol Lett; 2023 Jan; 45(1):83-94. PubMed ID: 36441275
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influences of the substrate feeding regime on methanogenic activity in biogas reactors approached by molecular and stable isotope methods.
    Lv Z; Leite AF; Harms H; Richnow HH; Liebetrau J; Nikolausz M
    Anaerobe; 2014 Oct; 29():91-9. PubMed ID: 24291758
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sodium ions and an energized membrane required by Methanosarcina barkeri for the oxidation of methanol to the level of formaldehyde.
    Blaut M; Müller V; Fiebig K; Gottschalk G
    J Bacteriol; 1985 Oct; 164(1):95-101. PubMed ID: 3930472
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acetate, methanol and carbon dioxide as substrates for growth of Methanosarcina barkeri.
    Hutten TJ; Bongaerts HC; van der Drift C; Vogels GD
    Antonie Van Leeuwenhoek; 1980; 46(6):601-10. PubMed ID: 6786216
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Degradation of furfural (2-furaldehyde) to methane and carbon dioxide by an anaerobic consortium.
    Rivard CJ; Grohmann K
    Appl Biochem Biotechnol; 1991; 28-29():285-95. PubMed ID: 1929367
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of Carbon Dioxide with Anaerobic Digester Biogas as a Methanogenic Biocathode Feedstock.
    Dykstra CM; Cheng C; Pavlostathis SG
    Environ Sci Technol; 2020 Jul; 54(14):8949-8957. PubMed ID: 32544322
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alteration of Methanogenic Archaeon by Ethanol Contribute to the Enhancement of Biogenic Methane Production of Lignite.
    Yang X; Liang Q; Chen Y; Wang B
    Front Microbiol; 2019; 10():2323. PubMed ID: 31649654
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of nickel and cobalt on kinetics of methanol conversion by methanogenic sludge as assessed by on-line CH4 monitoring.
    Gonzalez-Gil G; Kleerebezem R; Lettinga G
    Appl Environ Microbiol; 1999 Apr; 65(4):1789-93. PubMed ID: 10103284
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changes in the Substrate Source Reveal Novel Interactions in the Sediment-Derived Methanogenic Microbial Community.
    Szafranek-Nakonieczna A; Pytlak A; Grządziel J; Kubaczyński A; Banach A; Górski A; Goraj W; Kuźniar A; Gałązka A; Stępniewska Z
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31500341
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lignite effects on NH
    Bai M; Impraim R; Coates T; Flesch T; Trouvé R; van Grinsven H; Cao Y; Hill J; Chen D
    J Environ Manage; 2020 Oct; 271():110960. PubMed ID: 32579521
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diversity of H2/CO2-utilizing acetogenic bacteria from feces of non-methane-producing humans.
    Bernalier A; Rochet V; Leclerc M; Doré J; Pochart P
    Curr Microbiol; 1996 Aug; 33(2):94-9. PubMed ID: 8662179
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent Advances in Factors and Methods for Stimulation of Biomethane Production.
    Thakur N; Khardenavis A; Purohit HJ
    Recent Adv DNA Gene Seq; 2015; 9(1):3-13. PubMed ID: 26825255
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Methanogenesis: surprising molecules, microorganisms and ecosystems.
    Vogels GD; van der Drift C; Stumm CK; Keltjens JT; Zwart KB
    Antonie Van Leeuwenhoek; 1984; 50(5-6):557-67. PubMed ID: 6442121
    [TBL] [Abstract][Full Text] [Related]  

  • 39. mcrA Gene abundance correlates with hydrogenotrophic methane production rates in full-scale anaerobic waste treatment systems.
    Morris RL; Tale VP; Mathai PP; Zitomer DH; Maki JS
    Lett Appl Microbiol; 2016 Feb; 62(2):111-8. PubMed ID: 26509245
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-carbon chemistry of acetogenic and methanogenic bacteria.
    Zeikus JG; Kerby R; Krzycki JA
    Science; 1985 Mar; 227(4691):1167-73. PubMed ID: 3919443
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.