These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 36223425)

  • 21. Lowered nutritional quality of plankton caused by global environmental changes.
    Lau DCP; Jonsson A; Isles PDF; Creed IF; Bergström AK
    Glob Chang Biol; 2021 Dec; 27(23):6294-6306. PubMed ID: 34520606
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fatty acid trophic markers in the pelagic marine environment.
    Dalsgaard J; St John M; Kattner G; Müller-Navarra D; Hagen W
    Adv Mar Biol; 2003; 46():225-340. PubMed ID: 14601414
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cascading influences of grassland degradation on nutrient limitation in a high mountain lake and its inflow streams.
    Ren Z; Niu D; Ma P; Wang Y; Fu H; Elser JJ
    Ecology; 2019 Aug; 100(8):e02755. PubMed ID: 31087341
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Zooplankton communities and their relationship with water quality in eight reservoirs from the midwestern and southeastern regions of Brazil.
    Picapedra PHS; Fernandes C; Baumgartner G; Sanches PV
    Braz J Biol; 2021; 81(3):701-713. PubMed ID: 32876161
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The potential of zooplankton in constraining chytrid epidemics in phytoplankton hosts.
    Frenken T; Miki T; Kagami M; Van de Waal DB; Van Donk E; Rohrlack T; Gsell AS
    Ecology; 2020 Jan; 101(1):e02900. PubMed ID: 31544240
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nutrients mediate the effects of temperature on methylmercury concentrations in freshwater zooplankton.
    Jordan MP; Stewart AR; Eagles-Smith CA; Strecker AL
    Sci Total Environ; 2019 Jun; 667():601-612. PubMed ID: 30833259
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fish-mediated plankton responses to increased temperature in subtropical aquatic mesocosm ecosystems: Implications for lake management.
    He H; Jin H; Jeppesen E; Li K; Liu Z; Zhang Y
    Water Res; 2018 Nov; 144():304-311. PubMed ID: 30071399
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phytoplankton-zooplankton dynamics in periodic environments taking into account eutrophication.
    Luo J
    Math Biosci; 2013 Oct; 245(2):126-36. PubMed ID: 23791607
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct and indirect effects of elevated CO2 are revealed through shifts in phytoplankton, copepod development, and fatty acid accumulation.
    McLaskey AK; Keister JE; Schoo KL; Olson MB; Love BA
    PLoS One; 2019; 14(3):e0213931. PubMed ID: 30870509
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transfer efficiency of carbon, nutrients, and polyunsaturated fatty acids in planktonic food webs under different environmental conditions.
    Karpowicz M; Feniova I; Gladyshev MI; Ejsmont-Karabin J; Górniak A; Sushchik NN; Anishchenko OV; Dzialowski AR
    Ecol Evol; 2021 Jun; 11(12):8201-8214. PubMed ID: 34188880
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Atmospheric nitrogen deposition is associated with elevated phosphorus limitation of lake zooplankton.
    Elser JJ; Peace AL; Kyle M; Wojewodzic M; McCrackin ML; Andersen T; Hessen DO
    Ecol Lett; 2010 Oct; 13(10):1256-61. PubMed ID: 20846342
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contrasting the assembly of phytoplankton and zooplankton communities in a polluted semi-closed sea: Effects of marine compartments and environmental selection.
    Zhao Z; Li H; Sun Y; Yang Q; Fan J
    Environ Pollut; 2021 Sep; 285():117256. PubMed ID: 33957514
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ecological stoichiometry of indirect grazer effects on periphyton nutrient content.
    Hillebrand H; Frost P; Liess A
    Oecologia; 2008 Mar; 155(3):619-30. PubMed ID: 18064492
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bottom-up linkages between primary production, zooplankton, and fish in a shallow, hypereutrophic lake.
    Matsuzaki SS; Suzuki K; Kadoya T; Nakagawa M; Takamura N
    Ecology; 2018 Sep; 99(9):2025-2036. PubMed ID: 29884987
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bottom-up and top-down effects on phytoplankton communities in two freshwater lakes.
    Li Y; Meng J; Zhang C; Ji S; Kong Q; Wang R; Liu J
    PLoS One; 2020; 15(4):e0231357. PubMed ID: 32271852
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ecosystem flux and biotic modification as drivers of metaecosystem dynamics.
    Limberger R; Birtel J; Farias DD; Matthews B
    Ecology; 2017 Apr; 98(4):1082-1092. PubMed ID: 28112404
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Food web de-synchronization in England's largest lake: an assessment based on multiple phenological metrics.
    Thackeray SJ; Henrys PA; Feuchtmayr H; Jones ID; Maberly SC; Winfield IJ
    Glob Chang Biol; 2013 Dec; 19(12):3568-80. PubMed ID: 23868351
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of metalimnetic gradient on phytoplankton and zooplankton (Rotifera, Crustacea) communities in different trophic conditions.
    Karpowicz M; Ejsmont-Karabin J
    Environ Monit Assess; 2017 Aug; 189(8):367. PubMed ID: 28668991
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combined effects of elevated carbon dioxide and temperature on phytoplankton-zooplankton link: A multi-influence of climate change on freshwater planktonic communities.
    Li W; Xu X; Yao J; Tanaka N; Nishimura O; Ma H
    Sci Total Environ; 2019 Mar; 658():1175-1185. PubMed ID: 30677981
    [TBL] [Abstract][Full Text] [Related]  

  • 40. "Trophic overyielding": phytoplankton diversity promotes zooplankton productivity.
    Striebel M; Singer G; Stibor H; Andersen T
    Ecology; 2012 Dec; 93(12):2719-27. PubMed ID: 23431601
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.