These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 36223727)

  • 21. Optimized Immobilization of Biomolecules on Nonspherical Gold Nanostructures for Efficient Localized Surface Plasmon Resonance Biosensing.
    Garifullina A; Shen AQ
    Anal Chem; 2019 Dec; 91(23):15090-15098. PubMed ID: 31692333
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A method for the controllable fabrication of optical fiber-based localized surface plasmon resonance sensors.
    Calatayud-Sanchez A; Ortega-Gomez A; Barroso J; Zubia J; Benito-Lopez F; Villatoro J; Basabe-Desmonts L
    Sci Rep; 2022 Jun; 12(1):9566. PubMed ID: 35688862
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Applications of Optical Fiber in Label-Free Biosensors and Bioimaging: A Review.
    Li B; Zhang R; Bi R; Olivo M
    Biosensors (Basel); 2022 Dec; 13(1):. PubMed ID: 36671899
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A plasmonic optical fiber patterned by template transfer as a high-performance flexible nanoprobe for real-time biosensing.
    Jia P; Yang J
    Nanoscale; 2014 Aug; 6(15):8836-43. PubMed ID: 24956134
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Au nanoparticles as label-free competitive reporters for sensitivity enhanced fiber-optic SPR heparin sensor.
    Yuan H; Ji W; Chu S; Liu Q; Guang J; Sun G; Zhang Y; Han X; Masson JF; Peng W
    Biosens Bioelectron; 2020 Apr; 154():112039. PubMed ID: 32056956
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tuning Plasmonic Properties of Gold Nanoparticles by Employing Nanoscale DNA Hydrogel Scaffolds.
    Quazi MZ; Kim T; Yang J; Park N
    Biosensors (Basel); 2022 Dec; 13(1):. PubMed ID: 36671855
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective Ultrasensitive Optical Fiber Nanosensors Based on Plasmon Resonance Energy Transfer.
    Barroso J; Ortega-Gomez A; Calatayud-Sanchez A; Zubia J; Benito-Lopez F; Villatoro J; Basabe-Desmonts L
    ACS Sens; 2020 Jul; 5(7):2018-2024. PubMed ID: 32241107
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications.
    Danilov A; Tselikov G; Wu F; Kravets VG; Ozerov I; Bedu F; Grigorenko AN; Kabashin AV
    Biosens Bioelectron; 2018 May; 104():102-112. PubMed ID: 29331424
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electro-plasmonic-assisted biosensing of proteins and cells at the surface of optical fiber.
    Lobry M; Loyez M; Debliquy M; Chah K; Goormaghtigh E; Caucheteur C
    Biosens Bioelectron; 2023 Jan; 220():114867. PubMed ID: 36375256
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fiber-optic surface plasmon resonance sensors in the near-infrared spectral region.
    Masson JF; Kim YC; Obando LA; Peng W; Booksh KS
    Appl Spectrosc; 2006 Nov; 60(11):1241-6. PubMed ID: 17132440
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dual-channel fiber surface plasmon resonance biological sensor based on a hybrid interrogation of intensity and wavelength modulation.
    Li L; Zhang X; Liang Y; Guang J; Peng W
    J Biomed Opt; 2016 Dec; 21(12):127001. PubMed ID: 27930775
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Applications of Gold Nanoparticles in Plasmonic and Nanophotonic Biosensing.
    Hamad-Schifferli K
    Adv Biochem Eng Biotechnol; 2024; 187():185-221. PubMed ID: 38273208
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High time resolution and high signal-to-noise monitoring of the bacterial growth kinetics in the presence of plasmonic nanoparticles.
    Vukomanovic M; Torrents E
    J Nanobiotechnology; 2019 Feb; 17(1):21. PubMed ID: 30709404
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bottom-Up Fabrication of Plasmonic Nanoantenna-Based High-throughput Multiplexing Biosensors for Ultrasensitive Detection of microRNAs Directly from Cancer Patients' Plasma.
    Masterson AN; Liyanage T; Kaimakliotis H; Gholami Derami H; Deiss F; Sardar R
    Anal Chem; 2020 Jul; 92(13):9295-9304. PubMed ID: 32469524
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A plug-and-play optical fiber SPR sensor for simultaneous measurement of glucose and cholesterol concentrations.
    Zheng WL; Zhang YN; Li LK; Li XG; Zhao Y
    Biosens Bioelectron; 2022 Feb; 198():113798. PubMed ID: 34823961
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical fiber LSPR biosensor prepared by gold nanoparticle assembly on polyelectrolyte multilayer.
    Shao Y; Xu S; Zheng X; Wang Y; Xu W
    Sensors (Basel); 2010; 10(4):3585-96. PubMed ID: 22319313
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immunosensing with Near-Infrared Plasmonic Optical Fiber Gratings.
    Caucheteur C; Ribaut C; Malachovska V; Wattiez R
    Methods Mol Biol; 2017; 1571():47-71. PubMed ID: 28281249
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Localized surface plasmon coupled fluorescence fiber-optic biosensor with gold nanoparticles.
    Hsieh BY; Chang YF; Ng MY; Liu WC; Lin CH; Wu HT; Chou C
    Anal Chem; 2007 May; 79(9):3487-93. PubMed ID: 17378542
    [TBL] [Abstract][Full Text] [Related]  

  • 40. LSPR optical fiber sensor based on 3D gold nanoparticles with monolayer graphene as a spacer.
    Feng J; Gao J; Yang W; Liu R; Shafi M; Zha Z; Liu C; Xu S; Ning T; Jiang S
    Opt Express; 2022 Mar; 30(6):10187-10198. PubMed ID: 35299428
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.