These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 36223742)

  • 1. Alternative somatic and germline gene-regulatory strategies during starvation-induced developmental arrest.
    Webster AK; Chitrakar R; Taylor SM; Baugh LR
    Cell Rep; 2022 Oct; 41(2):111473. PubMed ID: 36223742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental plasticity and the response to nutrient stress in Caenorhabditis elegans.
    Rashid S; Wong C; Roy R
    Dev Biol; 2021 Jul; 475():265-276. PubMed ID: 33549550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DAF-18/PTEN inhibits germline zygotic gene activation during primordial germ cell quiescence.
    Fry AL; Webster AK; Burnett J; Chitrakar R; Baugh LR; Hubbard EJA
    PLoS Genet; 2021 Jul; 17(7):e1009650. PubMed ID: 34288923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell Non-autonomous Function of daf-18/PTEN in the Somatic Gonad Coordinates Somatic Gonad and Germline Development in C. elegans Dauer Larvae.
    Tenen CC; Greenwald I
    Curr Biol; 2019 Mar; 29(6):1064-1072.e8. PubMed ID: 30827916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. To grow or not to grow: nutritional control of development during Caenorhabditis elegans L1 arrest.
    Baugh LR
    Genetics; 2013 Jul; 194(3):539-55. PubMed ID: 23824969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insulin/IGF-1 signaling and heat stress differentially regulate HSF1 activities in germline development.
    Edwards SL; Erdenebat P; Morphis AC; Kumar L; Wang L; Chamera T; Georgescu C; Wren JD; Li J
    Cell Rep; 2021 Aug; 36(9):109623. PubMed ID: 34469721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insulin/IGF-dependent Wnt signaling promotes formation of germline tumors and other developmental abnormalities following early-life starvation in Caenorhabditis elegans.
    Shaul NC; Jordan JM; Falsztyn IB; Ryan Baugh L
    Genetics; 2023 Feb; 223(2):. PubMed ID: 36449574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Opposing activities of DRM and MES-4 tune gene expression and X-chromosome repression in Caenorhabditis elegans germ cells.
    Tabuchi TM; Rechtsteiner A; Strome S; Hagstrom KA
    G3 (Bethesda); 2014 Jan; 4(1):143-53. PubMed ID: 24281426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The oogenic germline starvation response in C. elegans.
    Seidel HS; Kimble J
    PLoS One; 2011; 6(12):e28074. PubMed ID: 22164230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of germ cell survival and plasticity in Caenorhabditis elegans.
    Cao W; Pocock R
    Biochem Soc Trans; 2022 Oct; 50(5):1517-1526. PubMed ID: 36196981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. synMuv B proteins antagonize germline fate in the intestine and ensure C. elegans survival.
    Petrella LN; Wang W; Spike CA; Rechtsteiner A; Reinke V; Strome S
    Development; 2011 Mar; 138(6):1069-79. PubMed ID: 21343362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Somatic aging pathways regulate reproductive plasticity in
    Ow MC; Nichitean AM; Hall SE
    Elife; 2021 Jul; 10():. PubMed ID: 34236316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ins-4 and daf-28 function redundantly to regulate C. elegans L1 arrest.
    Chen Y; Baugh LR
    Dev Biol; 2014 Oct; 394(2):314-26. PubMed ID: 25128585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. dbl-1/TGF-β and daf-12/NHR Signaling Mediate Cell-Nonautonomous Effects of daf-16/FOXO on Starvation-Induced Developmental Arrest.
    Kaplan RE; Chen Y; Moore BT; Jordan JM; Maxwell CS; Schindler AJ; Baugh LR
    PLoS Genet; 2015 Dec; 11(12):e1005731. PubMed ID: 26656736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two classes of gap junction channels mediate soma-germline interactions essential for germline proliferation and gametogenesis in Caenorhabditis elegans.
    Starich TA; Hall DH; Greenstein D
    Genetics; 2014 Nov; 198(3):1127-53. PubMed ID: 25195067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-cycle quiescence maintains Caenorhabditis elegans germline stem cells independent of GLP-1/Notch.
    Seidel HS; Kimble J
    Elife; 2015 Nov; 4():. PubMed ID: 26551561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A germ cell determinant reveals parallel pathways for germ line development in Caenorhabditis elegans.
    Mainpal R; Nance J; Yanowitz JL
    Development; 2015 Oct; 142(20):3571-82. PubMed ID: 26395476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A transcription elongation factor that links signals from the reproductive system to lifespan extension in Caenorhabditis elegans.
    Ghazi A; Henis-Korenblit S; Kenyon C
    PLoS Genet; 2009 Sep; 5(9):e1000639. PubMed ID: 19749979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct activities of the germline and somatic reproductive tissues in the regulation of Caenorhabditis elegans' longevity.
    Yamawaki TM; Arantes-Oliveira N; Berman JR; Zhang P; Kenyon C
    Genetics; 2008 Jan; 178(1):513-26. PubMed ID: 18202391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AMPK Regulates Developmental Plasticity through an Endogenous Small RNA Pathway in
    Wong C; Roy R
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32213851
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.