BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 36223821)

  • 1. The aggregation of natural inorganic colloids in aqueous environment: A review.
    Guo Y; Tang N; Guo J; Lu L; Li N; Hu T; Zhu Z; Gao X; Li X; Jiang L; Liang J
    Chemosphere; 2023 Jan; 310():136805. PubMed ID: 36223821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deposition of engineered nanoparticles (ENPs) on surfaces in aquatic systems: a review of interaction forces, experimental approaches, and influencing factors.
    Ma C; Huangfu X; He Q; Ma J; Huang R
    Environ Sci Pollut Res Int; 2018 Nov; 25(33):33056-33081. PubMed ID: 30267342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Significance of Non-DLVO Interactions on the Co-Transport of Functionalized Multiwalled Carbon Nanotubes and Soil Nanoparticles in Porous Media.
    Zhang M; Bradford SA; Klumpp E; Šimůnek J; Wang S; Wan Q; Jin C; Qiu R
    Environ Sci Technol; 2022 Aug; 56(15):10668-10680. PubMed ID: 35731699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative characterization of non-DLVO factors in the aggregation of black soil colloids.
    Gao X; Kou Q; Ren K; Zuo Y; Xu Y; Zhang Y; Lal R; Wang J
    Sci Rep; 2022 Mar; 12(1):5064. PubMed ID: 35332206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simplifying modeling of nanoparticle aggregation-sedimentation behavior in environmental systems: a theoretical analysis.
    Quik JT; van De Meent D; Koelmans AA
    Water Res; 2014 Oct; 62():193-201. PubMed ID: 24956601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aggregation Behavior of Inorganic 2D Nanomaterials Beyond Graphene: Insights from Molecular Modeling and Modified DLVO Theory.
    Mohona TM; Gupta A; Masud A; Chien SC; Lin LC; Nalam PC; Aich N
    Environ Sci Technol; 2019 Apr; 53(8):4161-4172. PubMed ID: 30884220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoparticle aggregation: principles and modeling.
    Zhang W
    Adv Exp Med Biol; 2014; 811():19-43. PubMed ID: 24683025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heteroaggregation of nanoparticles with biocolloids and geocolloids.
    Wang H; Adeleye AS; Huang Y; Li F; Keller AA
    Adv Colloid Interface Sci; 2015 Dec; 226(Pt A):24-36. PubMed ID: 26233495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aggregation kinetics of microplastics in aquatic environment: Complex roles of electrolytes, pH, and natural organic matter.
    Li S; Liu H; Gao R; Abdurahman A; Dai J; Zeng F
    Environ Pollut; 2018 Jun; 237():126-132. PubMed ID: 29482018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heteroaggregation of titanium dioxide nanoparticles with model natural colloids under environmentally relevant conditions.
    Praetorius A; Labille J; Scheringer M; Thill A; Hungerbühler K; Bottero JY
    Environ Sci Technol; 2014 Sep; 48(18):10690-8. PubMed ID: 25127331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aggregation of ferrihydrite nanoparticles: Effects of pH, electrolytes,and organics.
    Liu J; Louie SM; Pham C; Dai C; Liang D; Hu Y
    Environ Res; 2019 May; 172():552-560. PubMed ID: 30856401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation and stability of NOM-Mn(III) colloids in aquatic environments.
    Li Q; Xie L; Jiang Y; Fortner JD; Yu K; Liao P; Liu C
    Water Res; 2019 Feb; 149():190-201. PubMed ID: 30447524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability, aggregation, and sedimentation behaviors of typical nano metal oxide particles in aqueous environment.
    Dai H; Han T; Cui J; Li X; Abbasi HN; Wang X; Guo Z; Chen Y
    J Environ Manage; 2022 Aug; 316():115217. PubMed ID: 35561494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cotransport of hydroxyapatite nanoparticles and hematite colloids in saturated porous media: Mechanistic insights from mathematical modeling and phosphate oxygen isotope fractionation.
    Wang D; Jin Y; Jaisi DP
    J Contam Hydrol; 2015 Nov; 182():194-209. PubMed ID: 26409895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deviation from the classical colloid filtration theory in the presence of repulsive DLVO interactions.
    Tufenkji N; Elimelech M
    Langmuir; 2004 Dec; 20(25):10818-28. PubMed ID: 15568829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment.
    Hotze EM; Phenrat T; Lowry GV
    J Environ Qual; 2010; 39(6):1909-24. PubMed ID: 21284288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of electrolyte and poloxamer 188 on the aggregation kinetics of solid lipid nanoparticles (SLNs).
    Wei CC; Ge ZQ
    Drug Dev Ind Pharm; 2012 Sep; 38(9):1084-9. PubMed ID: 22181005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adhesion of bacterial pathogens to soil colloidal particles: influences of cell type, natural organic matter, and solution chemistry.
    Zhao W; Walker SL; Huang Q; Cai P
    Water Res; 2014 Apr; 53():35-46. PubMed ID: 24495985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of Heteroaggregation between Citrate-Stabilized Gold Nanoparticles and Hematite Colloids.
    Smith BM; Pike DJ; Kelly MO; Nason JA
    Environ Sci Technol; 2015 Nov; 49(21):12789-97. PubMed ID: 26444131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of dissolved organic matter with natural and engineered inorganic colloids: a review.
    Philippe A; Schaumann GE
    Environ Sci Technol; 2014 Aug; 48(16):8946-62. PubMed ID: 25082801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.