These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 36224222)

  • 1. Predicting the structure of large protein complexes using AlphaFold and Monte Carlo tree search.
    Bryant P; Pozzati G; Zhu W; Shenoy A; Kundrotas P; Elofsson A
    Nat Commun; 2022 Oct; 13(1):6028. PubMed ID: 36224222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MoLPC2: improved prediction of large protein complex structures and stoichiometry using Monte Carlo Tree Search and AlphaFold2.
    Chim HY; Elofsson A
    Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38781500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate prediction of protein assembly structure by combining AlphaFold and symmetrical docking.
    Jeppesen M; André I
    Nat Commun; 2023 Dec; 14(1):8283. PubMed ID: 38092742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of AlphaFold-Multimer prediction on multi-chain protein complexes.
    Zhu W; Shenoy A; Kundrotas P; Elofsson A
    Bioinformatics; 2023 Jul; 39(7):. PubMed ID: 37405868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of protein assemblies by structure sampling followed by interface-focused scoring.
    Olechnovič K; Valančauskas L; Dapkūnas J; Venclovas Č
    Proteins; 2023 Dec; 91(12):1724-1733. PubMed ID: 37578163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PyChelator: a Python-based Colab and web application for metal chelator calculations.
    Spahiu E; Kastrati E; Amrute-Nayak M
    BMC Bioinformatics; 2024 Jul; 25(1):239. PubMed ID: 39014298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing AlphaFold-Multimer-based Protein Complex Structure Prediction with MULTICOM in CASP15.
    Liu J; Guo Z; Wu T; Roy RS; Quadir F; Chen C; Cheng J
    bioRxiv; 2023 May; ():. PubMed ID: 37293073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A QXP-based multistep docking procedure for accurate prediction of protein-ligand complexes.
    Alisaraie L; Haller LA; Fels G
    J Chem Inf Model; 2006; 46(3):1174-87. PubMed ID: 16711737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the topology prediction of α-helical transmembrane proteins with deep transfer learning.
    Wang L; Zhong H; Xue Z; Wang Y
    Comput Struct Biotechnol J; 2022; 20():1993-2000. PubMed ID: 35521551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MPEXS-DNA, a new GPU-based Monte Carlo simulator for track structures and radiation chemistry at subcellular scale.
    Okada S; Murakami K; Incerti S; Amako K; Sasaki T
    Med Phys; 2019 Mar; 46(3):1483-1500. PubMed ID: 30593679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA inverse folding using Monte Carlo tree search.
    Yang X; Yoshizoe K; Taneda A; Tsuda K
    BMC Bioinformatics; 2017 Nov; 18(1):468. PubMed ID: 29110632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting structures of large protein assemblies using combinatorial assembly algorithm and AlphaFold2.
    Shor B; Schneidman-Duhovny D
    bioRxiv; 2023 May; ():. PubMed ID: 37293053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MEGADOCK-on-Colab: an easy-to-use protein-protein docking tool on Google Colaboratory.
    Ohue M
    BMC Res Notes; 2023 Sep; 16(1):229. PubMed ID: 37737185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. gPGA: GPU Accelerated Population Genetics Analyses.
    Zhou C; Lang X; Wang Y; Zhu C
    PLoS One; 2015; 10(8):e0135028. PubMed ID: 26248314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CombFold: predicting structures of large protein assemblies using a combinatorial assembly algorithm and AlphaFold2.
    Shor B; Schneidman-Duhovny D
    Nat Methods; 2024 Mar; 21(3):477-487. PubMed ID: 38326495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benchmarking AlphaFold for protein complex modeling reveals accuracy determinants.
    Yin R; Feng BY; Varshney A; Pierce BG
    Protein Sci; 2022 Aug; 31(8):e4379. PubMed ID: 35900023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal processing for gel electrophoresis images: Applying Monte Carlo Tree Search in GelApp.
    Nguyen PV; Ghezal A; Hsueh YC; Boudier T; Gan SK; Lee HK
    Electrophoresis; 2016 Aug; 37(15-16):2208-16. PubMed ID: 27251892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MDTS: automatic complex materials design using Monte Carlo tree search.
    M Dieb T; Ju S; Yoshizoe K; Hou Z; Shiomi J; Tsuda K
    Sci Technol Adv Mater; 2017; 18(1):498-503. PubMed ID: 28804525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MONTY: a Monte Carlo approach to protein-DNA recognition.
    Knegtel RM; Antoon J; Rullmann C; Boelens R; Kaptein R
    J Mol Biol; 1994 Jan; 235(1):318-24. PubMed ID: 8289251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New capabilities of the Monte Carlo dose engine ARCHER-RT: Clinical validation of the Varian TrueBeam machine for VMAT external beam radiotherapy.
    Adam DP; Liu T; Caracappa PF; Bednarz BP; Xu XG
    Med Phys; 2020 Jun; 47(6):2537-2549. PubMed ID: 32175615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.