These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 36224391)
21. The phosphorus cost of agricultural intensification in the tropics. Roy ED; Richards PD; Martinelli LA; Coletta LD; Lins SR; Vazquez FF; Willig E; Spera SA; VanWey LK; Porder S Nat Plants; 2016 Apr; 2(5):16043. PubMed ID: 27243646 [TBL] [Abstract][Full Text] [Related]
22. The role of scientists in policy making for more sustainable agriculture. Dima O; Inzé D Curr Biol; 2021 Mar; 31(5):R218-R220. PubMed ID: 33689712 [TBL] [Abstract][Full Text] [Related]
23. Phosphorus: The Underrated Element for Feeding the World. Herrera-Estrella L; López-Arredondo D Trends Plant Sci; 2016 Jun; 21(6):461-463. PubMed ID: 27160806 [TBL] [Abstract][Full Text] [Related]
24. Yield Trends Are Insufficient to Double Global Crop Production by 2050. Ray DK; Mueller ND; West PC; Foley JA PLoS One; 2013; 8(6):e66428. PubMed ID: 23840465 [TBL] [Abstract][Full Text] [Related]
25. Homecoming: rewinding the reductive evolution of the chloroplast genome for increasing crop yields. Llorente B; Segretin ME; Giannini E; Lobais C; Juárez ME; Paulsen IT; Blanco NE Nat Commun; 2021 Nov; 12(1):6734. PubMed ID: 34795241 [TBL] [Abstract][Full Text] [Related]
26. Checking Agriculture's Pulse: Field Pea ( Powers SE; Thavarajah D Front Plant Sci; 2019; 10():1489. PubMed ID: 31803218 [TBL] [Abstract][Full Text] [Related]
27. Crop switching can enhance environmental sustainability and farmer incomes in China. Xie W; Zhu A; Ali T; Zhang Z; Chen X; Wu F; Huang J; Davis KF Nature; 2023 Apr; 616(7956):300-305. PubMed ID: 36927804 [TBL] [Abstract][Full Text] [Related]
28. Life-cycle phosphorus management of the crop production-consumption system in China, 1980-2012. Wu H; Yuan Z; Gao L; Zhang L; Zhang Y Sci Total Environ; 2015 Jan; 502():706-21. PubMed ID: 25454652 [TBL] [Abstract][Full Text] [Related]
29. Mixed crop-livestock systems: an economic and environmental-friendly way of farming? Ryschawy J; Choisis N; Choisis JP; Joannon A; Gibon A Animal; 2012 Oct; 6(10):1722-30. PubMed ID: 22717157 [TBL] [Abstract][Full Text] [Related]
30. Improving crop nutrient efficiency through root architecture modifications. Li X; Zeng R; Liao H J Integr Plant Biol; 2016 Mar; 58(3):193-202. PubMed ID: 26460087 [TBL] [Abstract][Full Text] [Related]
31. Phosphorus acquisition and utilisation in crop legumes under global change. Pang J; Ryan MH; Lambers H; Siddique KH Curr Opin Plant Biol; 2018 Oct; 45(Pt B):248-254. PubMed ID: 29853281 [TBL] [Abstract][Full Text] [Related]
32. Guiding the design space for nanotechnology to advance sustainable crop production. Gilbertson LM; Pourzahedi L; Laughton S; Gao X; Zimmerman JB; Theis TL; Westerhoff P; Lowry GV Nat Nanotechnol; 2020 Sep; 15(9):801-810. PubMed ID: 32572231 [TBL] [Abstract][Full Text] [Related]
33. Identification of quantitative trait loci for phosphorus use efficiency traits in rice using a high density SNP map. Wang K; Cui K; Liu G; Xie W; Yu H; Pan J; Huang J; Nie L; Shah F; Peng S BMC Genet; 2014 Dec; 15():155. PubMed ID: 25551672 [TBL] [Abstract][Full Text] [Related]
35. Unmasking Novel Loci for Internal Phosphorus Utilization Efficiency in Rice Germplasm through Genome-Wide Association Analysis. Wissuwa M; Kondo K; Fukuda T; Mori A; Rose MT; Pariasca-Tanaka J; Kretzschmar T; Haefele SM; Rose TJ PLoS One; 2015; 10(4):e0124215. PubMed ID: 25923470 [TBL] [Abstract][Full Text] [Related]
36. Understanding the Adaptive Mechanisms of Plants to Enhance Phosphorus Use Efficiency on Podzolic Soils in Boreal Agroecosystems. Nadeem M; Wu J; Ghaffari H; Kedir AJ; Saleem S; Mollier A; Singh J; Cheema M Front Plant Sci; 2022; 13():804058. PubMed ID: 35371179 [TBL] [Abstract][Full Text] [Related]
37. Opportunities and challenges for nanotechnology in the agri-tech revolution. Lowry GV; Avellan A; Gilbertson LM Nat Nanotechnol; 2019 Jun; 14(6):517-522. PubMed ID: 31168073 [TBL] [Abstract][Full Text] [Related]
38. Towards sustainable maize production in the U.S. upper Midwest with interseeded cover crops. Rusch HL; Coulter JA; Grossman JM; Johnson GA; Porter PM; Garcia Y Garcia A PLoS One; 2020; 15(4):e0231032. PubMed ID: 32271795 [TBL] [Abstract][Full Text] [Related]
39. Using knowledge-based management for sustainable phosphorus use in China. Gong H; Xiang Y; Wu J; Nkebiwe PM; Feng G; Jiao X; Zhang F Sci Total Environ; 2022 Mar; 814():152739. PubMed ID: 34974004 [TBL] [Abstract][Full Text] [Related]
40. Phosphorus management in cropping systems of the Paris Basin: From farm to regional scale. Le Noë J; Garnier J; Billen G J Environ Manage; 2018 Jan; 205():18-28. PubMed ID: 28963875 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]