BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 36224518)

  • 1. Comparison of meiotic transcriptomes of three maize inbreds with different origins reveals differences in cell cycle and recombination.
    Garcia N; Yin L; Dukowic-Schulze S; Milsted C; Kianian PMA; Kianian S; Pawlowski WP; Chen C
    BMC Genomics; 2022 Oct; 23(1):702. PubMed ID: 36224518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic features shaping the landscape of meiotic double-strand-break hotspots in maize.
    He Y; Wang M; Dukowic-Schulze S; Zhou A; Tiang CL; Shilo S; Sidhu GK; Eichten S; Bradbury P; Springer NM; Buckler ES; Levy AA; Sun Q; Pillardy J; Kianian PMA; Kianian SF; Chen C; Pawlowski WP
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):12231-12236. PubMed ID: 29087335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The transcriptome landscape of early maize meiosis.
    Dukowic-Schulze S; Sundararajan A; Mudge J; Ramaraj T; Farmer AD; Wang M; Sun Q; Pillardy J; Kianian S; Retzel EF; Pawlowski WP; Chen C
    BMC Plant Biol; 2014 May; 14():118. PubMed ID: 24885405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ZmSPO11-2 is critical for meiotic recombination in maize.
    Li M; Li S; He Y; Wang Y; Zhang T; Li P; He Y
    Chromosome Res; 2022 Dec; 30(4):415-428. PubMed ID: 35674907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ZmPRD1 is essential for double-strand break formation, but is not required for bipolar spindle assembly during maize meiosis.
    Wang Y; Wang Y; Zang J; Chen H; He Y
    J Exp Bot; 2022 Jun; 73(11):3386-3400. PubMed ID: 35201286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ZmRAD51C is Essential for Double-Strand Break Repair and Homologous Recombination in Maize Meiosis.
    Jing J; Zhang T; Wang Y; Cui Z; He Y
    Int J Mol Sci; 2019 Nov; 20(21):. PubMed ID: 31694261
    [No Abstract]   [Full Text] [Related]  

  • 7. Recombination patterns in maize reveal limits to crossover homeostasis.
    Sidhu GK; Fang C; Olson MA; Falque M; Martin OC; Pawlowski WP
    Proc Natl Acad Sci U S A; 2015 Dec; 112(52):15982-7. PubMed ID: 26668366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The C. elegans DSB-2 protein reveals a regulatory network that controls competence for meiotic DSB formation and promotes crossover assurance.
    Rosu S; Zawadzki KA; Stamper EL; Libuda DE; Reese AL; Dernburg AF; Villeneuve AM
    PLoS Genet; 2013; 9(8):e1003674. PubMed ID: 23950729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust crossover assurance and regulated interhomolog access maintain meiotic crossover number.
    Rosu S; Libuda DE; Villeneuve AM
    Science; 2011 Dec; 334(6060):1286-9. PubMed ID: 22144627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic localization of SPO11-1 and conformational changes of meiotic axial elements during recombination initiation of maize meiosis.
    Ku JC; Ronceret A; Golubovskaya I; Lee DH; Wang C; Timofejeva L; Kao YH; Gomez Angoa AK; Kremling K; Williams-Carrier R; Meeley R; Barkan A; Cande WZ; Wang CR
    PLoS Genet; 2020 Apr; 16(4):e1007881. PubMed ID: 32310948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Meiotic crossovers characterized by haplotype-specific chromosome painting in maize.
    do Vale Martins L; Yu F; Zhao H; Dennison T; Lauter N; Wang H; Deng Z; Thompson A; Semrau K; Rouillard JM; Birchler JA; Jiang J
    Nat Commun; 2019 Oct; 10(1):4604. PubMed ID: 31601818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Axial Element Protein DESYNAPTIC2 Mediates Meiotic Double-Strand Break Formation and Synaptonemal Complex Assembly in Maize.
    Lee DH; Kao YH; Ku JC; Lin CY; Meeley R; Jan YS; Wang CJ
    Plant Cell; 2015 Sep; 27(9):2516-29. PubMed ID: 26296964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural variation for alleles under epigenetic control by the maize chromomethylase zmet2.
    Makarevitch I; Stupar RM; Iniguez AL; Haun WJ; Barbazuk WB; Kaeppler SM; Springer NM
    Genetics; 2007 Oct; 177(2):749-60. PubMed ID: 17660570
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Jing JL; Zhang T; Kao YH; Huang TH; Wang CR; He Y
    Plant Physiol; 2020 Dec; 184(4):1811-1822. PubMed ID: 33077613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drosophila PCH2 is required for a pachytene checkpoint that monitors double-strand-break-independent events leading to meiotic crossover formation.
    Joyce EF; McKim KS
    Genetics; 2009 Jan; 181(1):39-51. PubMed ID: 18957704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alignment of Homologous Chromosomes and Effective Repair of Programmed DNA Double-Strand Breaks during Mouse Meiosis Require the Minichromosome Maintenance Domain Containing 2 (MCMDC2) Protein.
    Finsterbusch F; Ravindranathan R; Dereli I; Stanzione M; Tränkner D; Tóth A
    PLoS Genet; 2016 Oct; 12(10):e1006393. PubMed ID: 27760146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The conserved histone variant H2A.Z illuminates meiotic recombination initiation.
    Yamada S; Kugou K; Ding DQ; Fujita Y; Hiraoka Y; Murakami H; Ohta K; Yamada T
    Curr Genet; 2018 Oct; 64(5):1015-1019. PubMed ID: 29549582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of meiotic recombination genes in maize and teosinte.
    Sidhu GK; Warzecha T; Pawlowski WP
    BMC Genomics; 2017 Jan; 18(1):106. PubMed ID: 28122517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ZmASY1 interacts with ZmPRD3 and is crucial for meiotic double-strand break formation in maize.
    Wang Y; Li SY; Wang YZ; He Y
    New Phytol; 2023 Jan; 237(2):454-470. PubMed ID: 36221195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative transcriptomics of early meiosis in Arabidopsis and maize.
    Dukowic-Schulze S; Harris A; Li J; Sundararajan A; Mudge J; Retzel EF; Pawlowski WP; Chen C
    J Genet Genomics; 2014 Mar; 41(3):139-52. PubMed ID: 24656234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.