These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 36224783)

  • 21. Silicon Nanoantenna Mix Arrays for a Trifecta of Quantum Emitter Enhancements.
    Dong Z; Gorelik S; Paniagua-Dominguez R; Yik J; Ho J; Tjiptoharsono F; Lassalle E; Rezaei SD; Neo DCJ; Bai P; Kuznetsov AI; Yang JKW
    Nano Lett; 2021 Jun; 21(11):4853-4860. PubMed ID: 34041907
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Closed-form representations of field components of fluorescent emitters in layered media.
    Dogan M; Aksun MI; Swan AK; Goldberg BB; Unlü MS
    J Opt Soc Am A Opt Image Sci Vis; 2009 Jun; 26(6):1458-66. PubMed ID: 19488185
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of highly efficient metallo-dielectric patch antennas for single-photon emission.
    Bigourdan F; Marquier F; Hugonin JP; Greffet JJ
    Opt Express; 2014 Feb; 22(3):2337-47. PubMed ID: 24663526
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unidirectional Enhanced Dipolar Emission with an Individual Dielectric Nanoantenna.
    Zhang T; Xu J; Deng ZL; Hu D; Qin F; Li X
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 31003409
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selective Plasmonic Enhancement of Electric- and Magnetic-Dipole Radiations of Er Ions.
    Choi B; Iwanaga M; Sugimoto Y; Sakoda K; Miyazaki HT
    Nano Lett; 2016 Aug; 16(8):5191-6. PubMed ID: 27436631
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Local field effect on the photoluminescent spectra of Eu3+ ions in glass.
    Jiang S; Zhou S; Wei X; Chen Y; Zhang Q; Yin M; Duan C
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4320-4. PubMed ID: 24738390
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strong field enhancement in individual Φ-shaped dielectric nanostructures based on anapole mode resonances.
    Wu J; Zhang F; Li Q; Feng Q; Wu Y; Wu L
    Opt Express; 2020 Jan; 28(1):570-579. PubMed ID: 32118982
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancement of electric and magnetic dipole transition of rare-earth-doped thin films tailored by high-index dielectric nanostructures.
    Wiecha PR; Majorel C; Girard C; Arbouet A; Masenelli B; Boisron O; Lecestre A; Larrieu G; Paillard V; Cuche A
    Appl Opt; 2019 Mar; 58(7):1682-1690. PubMed ID: 30874199
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles.
    Rolly B; Stout B; Bonod N
    Opt Express; 2012 Aug; 20(18):20376-86. PubMed ID: 23037088
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modal properties of dielectric bowtie cavities with deep sub-wavelength confinement.
    Kountouris G; Mørk J; Denning EV; Kristensen PT
    Opt Express; 2022 Oct; 30(22):40367-40378. PubMed ID: 36298971
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Planar Double-Epsilon-Near-Zero Cavities for Spontaneous Emission and Purcell Effect Enhancement.
    Caligiuri V; Palei M; Imran M; Manna L; Krahne R
    ACS Photonics; 2018 Jun; 5(6):2287-2294. PubMed ID: 31867410
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamic control of Purcell enhanced emission of erbium ions in nanoparticles.
    Casabone B; Deshmukh C; Liu S; Serrano D; Ferrier A; Hümmer T; Goldner P; Hunger D; de Riedmatten H
    Nat Commun; 2021 Jun; 12(1):3570. PubMed ID: 34117226
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dielectric optical nanoantennas.
    Hasan MR; Hellesø OG
    Nanotechnology; 2021 May; 32(20):202001. PubMed ID: 33461187
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced excitation and emission from 2D transition metal dichalcogenides with all-dielectric nanoantennas.
    Lepeshov S; Krasnok A; Alù A
    Nanotechnology; 2019 Jun; 30(25):254004. PubMed ID: 30844774
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Understanding quantum emitters in plasmonic nanocavities with conformal transformation: Purcell enhancement and forces.
    Pacheco-Peña V; Navarro-Cía M
    Nanoscale; 2018 Jul; 10(28):13607-13616. PubMed ID: 29978869
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Control of the emission from electric and magnetic dipoles by gold nanocup antennas.
    Mi H; Wang L; Zhang Y; Zhao G; Jiang R
    Opt Express; 2019 May; 27(10):14221-14230. PubMed ID: 31163874
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tailoring the chirality of light emission with spherical Si-based antennas.
    Zambrana-Puyalto X; Bonod N
    Nanoscale; 2016 May; 8(19):10441-52. PubMed ID: 27141982
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimal compressed sensing reconstructions of fMRI using 2D deterministic and stochastic sampling geometries.
    Jeromin O; Pattichis MS; Calhoun VD
    Biomed Eng Online; 2012 May; 11():25. PubMed ID: 22607467
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Radiation engineering of optical antennas for maximum field enhancement.
    Seok TJ; Jamshidi A; Kim M; Dhuey S; Lakhani A; Choo H; Schuck PJ; Cabrini S; Schwartzberg AM; Bokor J; Yablonovitch E; Wu MC
    Nano Lett; 2011 Jul; 11(7):2606-10. PubMed ID: 21648393
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Control of radiative processes using tunable plasmonic nanopatch antennas.
    Rose A; Hoang TB; McGuire F; Mock JJ; Ciracì C; Smith DR; Mikkelsen MH
    Nano Lett; 2014 Aug; 14(8):4797-802. PubMed ID: 25020029
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.