These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36224857)

  • 1. Digital twin of atmospheric turbulence phase screens based on deep neural networks.
    Jia P; Wang W; Ning R; Xue X
    Opt Express; 2022 Jun; 30(12):21362-21376. PubMed ID: 36224857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Method for simulating atmospheric turbulence phase effects for multiple time slices and anisoplanatic conditions.
    Roggemann MC; Welsh BM; Montera D; Rhoadarmer TA
    Appl Opt; 1995 Jul; 34(20):4037-51. PubMed ID: 21052227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wave optics simulation of atmospheric turbulence and reflective speckle effects in CO2 lidar.
    Nelson DH; Walters DL; Mackerrow EP; Schmitt MJ; Quick CR; Porch WM; Petrin RR
    Appl Opt; 2000 Apr; 39(12):1857-71. PubMed ID: 18345082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Features of optical image jitter in a random medium with a finite outer scale.
    Lukin VP; Nosov VV; Torgaev AV
    Appl Opt; 2014 Apr; 53(10):B196-204. PubMed ID: 24787204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computationally efficient autoregressive method for generating phase screens with frozen flow and turbulence in optical simulations.
    Srinath S; Poyneer LA; Rudy AR; Ammons SM
    Opt Express; 2015 Dec; 23(26):33335-49. PubMed ID: 26831998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atmosphere-like turbulence generation with surface-etched phase-screens.
    Hippler S; Hormuth F; Butler DJ; Brandner W; Henning T
    Opt Express; 2006 Oct; 14(22):10139-48. PubMed ID: 19529410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning based atmospheric turbulence compensation for orbital angular momentum beam distortion and communication.
    Liu J; Wang P; Zhang X; He Y; Zhou X; Ye H; Li Y; Xu S; Chen S; Fan D
    Opt Express; 2019 Jun; 27(12):16671-16688. PubMed ID: 31252890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semi-analytic simulation of optical wave propagation through turbulence.
    Schmidt JD; Tellez JA; Gbur GJ
    Appl Opt; 2022 Nov; 61(32):9439-9448. PubMed ID: 36606898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance enhancement of free-space optical communications under atmospheric turbulence using modes diversity coherent receipt.
    Zheng D; Li Y; Zhou H; Bian Y; Yang C; Li W; Qiu J; Guo H; Hong X; Zuo Y; Giles IP; Tong W; Wu J
    Opt Express; 2018 Oct; 26(22):28879-28890. PubMed ID: 30470058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-surface atmospheric turbulence profile measuring technology based on an airship-mounted laser communication system.
    Wang T; Zhao X; Song Y; Wang J; Luan Y; Li Y; Chang S
    Appl Opt; 2022 Jan; 61(2):439-445. PubMed ID: 35200881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-wavenumber compensation with Zernike tilt for non-Kolmogorov turbulence phase screens.
    Wijerathna E; Zhan H; Voelz D; Muschinski A
    Appl Opt; 2023 Feb; 62(5):1253-1262. PubMed ID: 36821225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal analysis of laser beam propagation in the atmosphere using computer-generated long phase screens.
    Dios F; Recolons J; Rodríguez A; Batet O
    Opt Express; 2008 Feb; 16(3):2206-20. PubMed ID: 18542300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal power spectra of irradiance scintillation for infrared optical waves' propagation through marine atmospheric turbulence.
    Cui L
    J Opt Soc Am A Opt Image Sci Vis; 2014 Sep; 31(9):2030-7. PubMed ID: 25401443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atmospheric turbulence correction using digital holographic detection: experimental results.
    Marron JC; Kendrick RL; Seldomridge N; Grow TD; Höft TA
    Opt Express; 2009 Jul; 17(14):11638-51. PubMed ID: 19582079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free Space Ground to Satellite Optical Communications Using Kramers-Kronig Transceiver in the Presence of Atmospheric Turbulence.
    Naghshvarianjahromi M; Kumar S; Deen MJ
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. When Digital Twin Meets Network Softwarization in the Industrial IoT: Real-Time Requirements Case Study.
    Kherbache M; Maimour M; Rondeau E
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution properties of partially coherent radially polarized Laguerre-Gaussian vortex beams in an anisotropic turbulent atmosphere.
    Zhao L; Xu Y; Dan Y
    Opt Express; 2021 Oct; 29(22):34986-35002. PubMed ID: 34808945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significance of anisotropy and the outer scale of turbulence for optical and radio seeing.
    Coulman CE; Vernin J
    Appl Opt; 1991 Jan; 30(1):118-26. PubMed ID: 20581955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of atmospheric turbulence for optical systems with extended sources.
    Safari M; Hranilovic S
    Appl Opt; 2012 Nov; 51(31):7509-17. PubMed ID: 23128697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance analysis of a spatial diversity coherent free-space optical communication system based on optimal branch block phase correction.
    Wang L; Wang J; Tang X; Chen H; Chen X
    Opt Express; 2022 Feb; 30(5):7854-7869. PubMed ID: 35299539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.