These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36224879)

  • 1. Unidirectional amplification in optomechanical system coupling with a structured bath.
    Peng R; Zhang WZ; Chao S; Zhao C; Yang Z; Yang J; Zhou L
    Opt Express; 2022 Jun; 30(12):21649-21663. PubMed ID: 36224879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preservation Macroscopic Entanglement of Optomechanical Systems in non-Markovian Environment.
    Cheng J; Zhang WZ; Zhou L; Zhang W
    Sci Rep; 2016 Apr; 6():23678. PubMed ID: 27032674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonreciprocity in a strongly coupled three-mode optomechanical circulatory system.
    Shang C; Shen HZ; Yi XX
    Opt Express; 2019 Sep; 27(18):25882-25901. PubMed ID: 31510451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying non-Markovianity for a chromophore-qubit pair in a super-Ohmic bath.
    Liu J; Sun K; Wang X; Zhao Y
    Phys Chem Chem Phys; 2015 Mar; 17(12):8087-96. PubMed ID: 25729785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optomechanical quadrature squeezing in the non-Markovian regime.
    Xiong B; Li X; Chao SL; Zhou L
    Opt Lett; 2018 Dec; 43(24):6053-6056. PubMed ID: 30548003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-resistant generation of robust entanglement with blue-detuning driving and mechanical gain.
    Wang T; Wang L; Liu YM; Bai CH; Wang DY; Wang HF; Zhang S
    Opt Express; 2019 Oct; 27(21):29581-29593. PubMed ID: 31684217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum-limited directional amplifier based on a triple-cavity optomechanical system.
    Jiang C; Ji B; Cui Y; Zuo F; Shi J; Chen G
    Opt Express; 2018 Jun; 26(12):15255-15267. PubMed ID: 30114775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double-passage ground-state cooling induced by quantum interference in the hybrid optomechanical system.
    Li L; Luo RH; Liu L; Zhang S; Zhang JQ
    Sci Rep; 2018 Sep; 8(1):14276. PubMed ID: 30250233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency tunable single photon diode based on giant atom coupling to a waveguide.
    Cai G; Lu Y; Ma XS; Cheng MT; Huang X
    Opt Express; 2023 Sep; 31(20):33015-33025. PubMed ID: 37859090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum-limited amplification and parametric instability in the reversed dissipation regime of cavity optomechanics.
    Nunnenkamp A; Sudhir V; Feofanov AK; Roulet A; Kippenberg TJ
    Phys Rev Lett; 2014 Jul; 113(2):023604. PubMed ID: 25062181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-Markovianity of qubit evolution under the action of spin environment.
    Chakraborty S; Mallick A; Mandal D; Goyal SK; Ghosh S
    Sci Rep; 2019 Feb; 9(1):2987. PubMed ID: 30814544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-gate transistor amplifier in a multimode optomechanical system.
    Chen YT; Du L; Liu YM; Zhang Y
    Opt Express; 2020 Mar; 28(5):7095-7107. PubMed ID: 32225944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Squeezed optomechanics with phase-matched amplification and dissipation.
    Lü XY; Wu Y; Johansson JR; Jing H; Zhang J; Nori F
    Phys Rev Lett; 2015 Mar; 114(9):093602. PubMed ID: 25793814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cooling a Harmonic Oscillator by Optomechanical Modification of Its Bath.
    Xu X; Purdy T; Taylor JM
    Phys Rev Lett; 2017 Jun; 118(22):223602. PubMed ID: 28621997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ground-state cooling of mechanical oscillator via quadratic optomechanical coupling with two coupled optical cavities.
    Yang JY; Wang DY; Bai CH; Guan SY; Gao XY; Zhu AD; Wang HF
    Opt Express; 2019 Aug; 27(16):22855-22867. PubMed ID: 31510570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-Markovian dynamics of a dissipative two-level system: nonzero bias and sub-Ohmic bath.
    Gan C; Zheng H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041106. PubMed ID: 19905272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum mechanical response to a driven Caldeira-Leggett bath.
    Grabert H; Thorwart M
    Phys Rev E; 2018 Jul; 98(1-1):012122. PubMed ID: 30110760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong Coupling Optomechanics Mediated by a Qubit in the Dispersive Regime.
    Aporvari AS; Vitali D
    Entropy (Basel); 2021 Jul; 23(8):. PubMed ID: 34441106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonequilibrium Quantum Criticality and Non-Markovian Environment: Critical Exponent of a Quantum Phase Transition.
    Nagy D; Domokos P
    Phys Rev Lett; 2015 Jul; 115(4):043601. PubMed ID: 26252683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macroscopic entanglement in optomechanical system induced by non-Markovian environment.
    Zhao X
    Opt Express; 2019 Sep; 27(20):29082-29097. PubMed ID: 31684649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.