BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36224953)

  • 1. High-resolution 3D shape measurement with extended depth of field using fast chromatic focus stacking.
    Ramm R; Mozaffari-Afshar M; Höhne D; Hilbert T; Speck H; Kühl S; Hoffmann D; Erbes S; Kühmstedt P; Heist S; Notni G
    Opt Express; 2022 Jun; 30(13):22590-22607. PubMed ID: 36224953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive focus stacking for large depth-of-field microscopic structured-light 3D imaging.
    Chen L; Ding R; Zhang S
    Appl Opt; 2024 Apr; 63(12):3219-3227. PubMed ID: 38856470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extended depth of field in augmented reality.
    Kim SK; Kwon Y; Yoon KH
    Sci Rep; 2023 May; 13(1):8786. PubMed ID: 37258690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EDoF-ToF: extended depth of field time-of-flight imaging.
    Tan J; Boominathan V; Baraniuk R; Veeraraghavan A
    Opt Express; 2021 Nov; 29(23):38540-38556. PubMed ID: 34808905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vari-Focal Light Field Camera for Extended Depth of Field.
    Kim HM; Kim MS; Chang S; Jeong J; Jeon HG; Song YM
    Micromachines (Basel); 2021 Nov; 12(12):. PubMed ID: 34945303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Snapshot multifocal light field microscopy.
    He K; Wang X; Wang ZW; Yi H; Scherer NF; Katsaggelos AK; Cossairt O
    Opt Express; 2020 Apr; 28(8):12108-12120. PubMed ID: 32403711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extended depth-of-field 3D endoscopy with synthetic aperture integral imaging using an electrically tunable focal-length liquid-crystal lens.
    Wang YJ; Shen X; Lin YH; Javidi B
    Opt Lett; 2015 Aug; 40(15):3564-7. PubMed ID: 26258358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient high-resolution fluorescence projection imaging over an extended depth of field through optical hardware and deep learning optimizations.
    Luo X; Lu Z; Jin M; Chen S; Yang J
    Biomed Opt Express; 2024 Jun; 15(6):3831-3847. PubMed ID: 38867796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large depth-of-field 3D shape measurement using an electrically tunable lens.
    Hu X; Wang G; Zhang Y; Yang H; Zhang S
    Opt Express; 2019 Oct; 27(21):29697-29709. PubMed ID: 31684227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extending the depth of focus of fiber-optic optical coherence tomography using a chromatic dual-focus design.
    Li J; Luo Y; Wang X; Wang N; Bo E; Chen S; Chen S; Chen S; Tsai MT; Liu L
    Appl Opt; 2018 Jul; 57(21):6040-6046. PubMed ID: 30118032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution and high-speed 3D tracking of microrobots using a fluorescent light field microscope.
    Lv J; Hu Y; Zhao H; Ye M; Ding N; Zhong J; Wang X
    Quant Imaging Med Surg; 2023 Mar; 13(3):1426-1439. PubMed ID: 36915357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extended depth of field for Fresnel zone aperture camera via fast passive depth estimation.
    Yang C; Ni C; Zhang X; Li Y; Zhai Y; He W; Zhang W; Chen Q
    Opt Express; 2024 Mar; 32(7):11323-11336. PubMed ID: 38570982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interferometric synthetic aperture microscopy for extended focus optical coherence microscopy.
    Coquoz S; Bouwens A; Marchand PJ; Extermann J; Lasser T
    Opt Express; 2017 Nov; 25(24):30807-30819. PubMed ID: 29221107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gear Shape Measurement Potential of Laser Triangulation and Confocal-Chromatic Distance Sensors.
    Pillarz M; von Freyberg A; Stöbener D; Fischer A
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33573336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Swept-Source-Based Chromatic Confocal Microscopy.
    Jeong D; Park SJ; Jang H; Kim H; Kim J; Kim CS
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33371378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compact and fast depth sensor based on a liquid lens using chromatic aberration to improve accuracy.
    Jung GS; Won YH
    Opt Express; 2021 May; 29(10):15786-15801. PubMed ID: 33985273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DoF-Dependent and Equal-Partition Based Lens Distortion Modeling and Calibration Method for Close-Range Photogrammetry.
    Li X; Li W; Yuan X; Yin X; Ma X
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33092299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A line-scanning chromatic confocal sensor for three-dimensional profile measurement on highly reflective materials.
    Hu H; Mei S; Fan L; Wang H
    Rev Sci Instrum; 2021 May; 92(5):053707. PubMed ID: 34243332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Confocal chromatic sensor with an actively tilted lens for 3D measurement.
    Fuerst ME; Csencsics E; Haider C; Schitter G
    J Opt Soc Am A Opt Image Sci Vis; 2020 Sep; 37(9):B46-B52. PubMed ID: 32902419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fiber-optic large-depth 3D chromatic confocal endomicroscopy.
    Yang X; Wang Y; Zhang H; Qin H; Wang S; Tong Y; Zhou K; Sun R; Yue S; Chen X; Ding S; Wang P
    Biomed Opt Express; 2022 Jan; 13(1):300-313. PubMed ID: 35154872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.