These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 36224962)

  • 21. Observation of the Fano resonance in gold nanorods supported on high-dielectric-constant substrates.
    Chen H; Shao L; Ming T; Woo KC; Man YC; Wang J; Lin HQ
    ACS Nano; 2011 Aug; 5(8):6754-63. PubMed ID: 21786827
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Linearly Tunable Fano Resonance Modes in a Plasmonic Nanostructure with a Waveguide Loaded with Two Rectangular Cavities Coupled by a Circular Cavity.
    Wang Q; Ouyang Z; Sun Y; Lin M; Liu Q
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31052439
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System.
    He Y; Zhu KD
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28632165
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultranarrow and Tunable Fano Resonance in Ag Nanoshells and a Simple Ag Nanomatryushka.
    Gu P; Cai X; Wu G; Xue C; Chen J; Zhang Z; Yan Z; Liu F; Tang C; Du W; Huang Z; Chen Z
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443870
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermal Signatures of Plasmonic Fano Interferences: Toward the Achievement of Nanolocalized Temperature Manipulation.
    Baldwin CL; Bigelow NW; Masiello DJ
    J Phys Chem Lett; 2014 Apr; 5(8):1347-54. PubMed ID: 26269978
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Layered silver nanoparticles embedded in a BaF(2) matrix: optical characterization.
    Protopapa ML; Rizzo A; Re M; Pilloni L
    Appl Opt; 2009 Dec; 48(35):6662-9. PubMed ID: 20011006
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Absorption Spectroscopy of an Individual Fano Cluster.
    Yorulmaz M; Hoggard A; Zhao H; Wen F; Chang WS; Halas NJ; Nordlander P; Link S
    Nano Lett; 2016 Oct; 16(10):6497-6503. PubMed ID: 27669356
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plasmonic nanosensor based on multiple independently tunable Fano resonances.
    Cheng L; Wang Z; He X; Cao P
    Beilstein J Nanotechnol; 2019; 10():2527-2537. PubMed ID: 31921531
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface plasmonic lasing via the amplification of coupled surface plasmon waves inside dielectric-metal-dielectric waveguides.
    Kumar A; Yu SF; Li XF; Lau SP
    Opt Express; 2008 Sep; 16(20):16113-23. PubMed ID: 18825250
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Refractive Index Sensor Based on Fano Resonances in Metal-Insulator-Metal Waveguides Coupled with Resonators.
    Tang Y; Zhang Z; Wang R; Hai Z; Xue C; Zhang W; Yan S
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28383510
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Independently Tunable Fano Resonances Based on the Coupled Hetero-Cavities in a Plasmonic MIM System.
    Wang Q; Ouyang Z; Lin M; Liu Q
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30201870
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fano Resonance Based on Metal-Insulator-Metal Waveguide-Coupled Double Rectangular Cavities for Plasmonic Nanosensors.
    Zhang Z; Luo L; Xue C; Zhang W; Yan S
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27164101
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CROW-based Fano structures for all optical switching devices.
    Rezaei MH; Yavari MH
    Appl Opt; 2022 Apr; 61(11):3156-3164. PubMed ID: 35471293
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Excitation and tuning of Fano-like cavity plasmon resonances in dielectric-metal core-shell resonators.
    Gu P; Wan M; Wu W; Chen Z; Wang Z
    Nanoscale; 2016 May; 8(19):10358-63. PubMed ID: 27139034
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Limits of the Effective Medium Theory in Particle Amplified Surface Plasmon Resonance Spectroscopy Biosensors.
    Costa JS; Zaman Q; Q da Costa K; Dmitriev V; Pandoli O; Fontes G; Del Rosso T
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30704098
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Absorption enhancement in visible range from Fano resonant silicon nanoparticle arrays embedded in single crystal Mg:Er:LiNbO
    Ma C; Liu K; Ma C; Liu Y; Xu Y; Yu S
    Nanotechnology; 2022 Jun; 33(37):. PubMed ID: 35654003
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fano resonances in plasmonic heptamer nano-hole arrays.
    Hajebifard A; Berini P
    Opt Express; 2017 Aug; 25(16):18566-18580. PubMed ID: 29041055
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasmonics of Diffused Silver Nanoparticles in Silver/Nitride Optical Thin Films.
    Ye Y; Loh JYY; Flood A; Fang CY; Chang J; Zhao R; Brodersen P; Kherani NP
    Sci Rep; 2019 Dec; 9(1):20227. PubMed ID: 31882894
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fano Transparency in Rounded Nanocube Dimers Induced by Gap Plasmon Coupling.
    Pellarin M; Ramade J; Rye JM; Bonnet C; Broyer M; Lebeault MA; Lermé J; Marguet S; Navarro JR; Cottancin E
    ACS Nano; 2016 Dec; 10(12):11266-11279. PubMed ID: 28024347
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nonlinear features of Fano resonance: a QM/EM study.
    Sun J; Ding Z; Yu Y; Liang W
    Phys Chem Chem Phys; 2021 Aug; 23(30):15994-16004. PubMed ID: 34318831
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.