These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36225004)

  • 1. Mitigation of amplified spontaneous emission noise for an all-fiber coaxial aerosol lidar with different single-photon detectors.
    Qiang W; Yang B; Shang X; Wang C; Xue X; Chen T
    Opt Express; 2022 Jun; 30(13):23187-23197. PubMed ID: 36225004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully integrated free-running InGaAs/InP single-photon detector for accurate lidar applications.
    Yu C; Shangguan M; Xia H; Zhang J; Dou X; Pan JW
    Opt Express; 2017 Jun; 25(13):14611-14620. PubMed ID: 28789045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compact and lightweight 1.5
    Yu C; Qiu J; Xia H; Dou X; Zhang J; Pan JW
    Rev Sci Instrum; 2018 Oct; 89(10):103106. PubMed ID: 30399898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compact and efficient 1064 nm up-conversion atmospheric lidar.
    Chen Q; Mao S; Yin Z; Yi Y; Li X; Wang A; Wang X
    Opt Express; 2023 Jul; 31(15):23931-23943. PubMed ID: 37475233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micro-pulse polarization lidar at 1.5  μm using a single superconducting nanowire single-photon detector.
    Qiu J; Xia H; Shangguan M; Dou X; Li M; Wang C; Shang X; Lin S; Liu J
    Opt Lett; 2017 Nov; 42(21):4454-4457. PubMed ID: 29088186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of atmospheric refractive index structure constant using an InGaAs/InP single-photon detector.
    Jiang P; Xia H; Hu J; Wei T
    Opt Lett; 2023 Dec; 48(23):6104-6107. PubMed ID: 38039202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 1.25  GHz sine wave gating InGaAs/InP single-photon detector with a monolithically integrated readout circuit.
    Jiang WH; Liu JH; Liu Y; Jin G; Zhang J; Pan JW
    Opt Lett; 2017 Dec; 42(24):5090-5093. PubMed ID: 29240144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. InGaAs/InP single-photon detectors with 60% detection efficiency at 1550 nm.
    Fang YQ; Chen W; Ao TH; Liu C; Wang L; Gao XJ; Zhang J; Pan JW
    Rev Sci Instrum; 2020 Aug; 91(8):083102. PubMed ID: 32872918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Miniaturized high-frequency sine wave gating InGaAs/InP single-photon detector.
    Jiang WH; Gao XJ; Fang YQ; Liu JH; Zhou Y; Jiang LQ; Chen W; Jin G; Zhang J; Pan JW
    Rev Sci Instrum; 2018 Dec; 89(12):123104. PubMed ID: 30599549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating random errors due to shot noise in backscatter lidar observations.
    Liu Z; Hunt W; Vaughan M; Hostetler C; McGill M; Powell K; Winker D; Hu Y
    Appl Opt; 2006 Jun; 45(18):4437-47. PubMed ID: 16778954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stratospheric aerosol lidar with a 300 µm diameter superconducting nanowire single-photon detector at 1064 nm.
    Li M; Wu Y; Yuan J; Zhao L; Tang D; Dong J; Xia H; Dou X
    Opt Express; 2023 Jan; 31(2):2768-2779. PubMed ID: 36785283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing LiDAR performance using threshold photon-number-resolving detection.
    Wu M; Zhao X; Chen R; Zhang L; He W; Chen Q
    Opt Express; 2024 Jan; 32(2):2574-2589. PubMed ID: 38297783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency modulated continuous wave and time of flight LIDAR with single photons: a comparison.
    Staffas T; Elshaari A; Zwiller V
    Opt Express; 2024 Feb; 32(5):7332-7341. PubMed ID: 38439416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photon counting LIDAR at 2.3µm wavelength with superconducting nanowires.
    Taylor GG; Morozov D; Gemmell NR; Erotokritou K; Miki S; Terai H; Hadfield RH
    Opt Express; 2019 Dec; 27(26):38147-38158. PubMed ID: 31878586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient modeling workflow for high-performance nanowire single-photon avalanche detector.
    Li Z; Tan HH; Jagadish C; Fu L
    Nanotechnology; 2024 Feb; 35(17):. PubMed ID: 38237187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simplified calculations for accuracy of a lidar dial system to measure atmospheric H2O vapor and temperature.
    Braun WC
    Appl Opt; 1985 Jan; 24(1):109-17. PubMed ID: 18216911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Dual-wavelength Mie lidar observations of tropospheric aerosols].
    Chi RL; Wu DC; Liu B; Zhou J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jun; 29(6):1468-72. PubMed ID: 19810510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Entropy-Based Anti-Noise Method for Reducing Ranging Error in Photon Counting Lidar.
    Huang M; Zhang Z; Xie J; Li J; Zhao Y
    Entropy (Basel); 2021 Nov; 23(11):. PubMed ID: 34828196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-rate quantum key distribution over 100 km using ultra-low-noise, 2-GHz sinusoidally gated InGaAs/InP avalanche photodiodes.
    Namekata N; Takesue H; Honjo T; Tokura Y; Inoue S
    Opt Express; 2011 May; 19(11):10632-9. PubMed ID: 21643318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Backscattering measurements of atmospheric aerosols at CO2 laser wavelengths: implications of aerosol spectral structure on differential-absorption lidar retrievals of molecular species.
    Ben-David A
    Appl Opt; 1999 Apr; 38(12):2616-24. PubMed ID: 18319835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.