These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 36225053)

  • 1. Simple security proof of coherent-one-way quantum key distribution.
    Gao RQ; Xie YM; Gu J; Liu WB; Weng CX; Li BH; Yin HL; Chen ZB
    Opt Express; 2022 Jun; 30(13):23783-23795. PubMed ID: 36225053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upper Security Bounds for Coherent-One-Way Quantum Key Distribution.
    González-Payo J; Trényi R; Wang W; Curty M
    Phys Rev Lett; 2020 Dec; 125(26):260510. PubMed ID: 33449754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting a Photon-Number Splitting Attack in Decoy-State Measurement-Device-Independent Quantum Key Distribution via Statistical Hypothesis Testing.
    Chen X; Chen L; Yan Y
    Entropy (Basel); 2022 Sep; 24(9):. PubMed ID: 36141118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-distance decoy-state quantum key distribution in optical fiber.
    Rosenberg D; Harrington JW; Rice PR; Hiskett PA; Peterson CG; Hughes RJ; Lita AE; Nam SW; Nordholt JE
    Phys Rev Lett; 2007 Jan; 98(1):010503. PubMed ID: 17358462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Provably secure and high-rate quantum key distribution with time-bin qudits.
    Islam NT; Lim CCW; Cahall C; Kim J; Gauthier DJ
    Sci Adv; 2017 Nov; 3(11):e1701491. PubMed ID: 29202028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reference-frame-independent, measurement-device-independent quantum key distribution using fewer quantum states.
    Lee D; Hong S; Cho YW; Lim HT; Han SW; Jung H; Moon S; Lee KJ; Kim YS
    Opt Lett; 2020 May; 45(9):2624-2627. PubMed ID: 32356832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proof-of-principle demonstration of parametric down-conversion source-based quantum key distribution over 40 dB channel loss.
    Zhang CH; Wang D; Zhou XY; Wang S; Zhang LB; Yin ZQ; Chen W; Han ZF; Guo GC; Wang Q
    Opt Express; 2018 Oct; 26(20):25921-25933. PubMed ID: 30469686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source.
    Wang Q; Chen W; Xavier G; Swillo M; Zhang T; Sauge S; Tengner M; Han ZF; Guo GC; Karlsson A
    Phys Rev Lett; 2008 Mar; 100(9):090501. PubMed ID: 18352685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-distance measurement-device-independent quantum key distribution with coherent-state superpositions.
    Yin HL; Cao WF; Fu Y; Tang YL; Liu Y; Chen TY; Chen ZB
    Opt Lett; 2014 Sep; 39(18):5451-4. PubMed ID: 26466295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase Matching Quantum Key Distribution based on Single-Photon Entanglement.
    Li W; Wang L; Zhao S
    Sci Rep; 2019 Oct; 9(1):15466. PubMed ID: 31664069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hacking on decoy-state quantum key distribution system with partial phase randomization.
    Sun SH; Jiang MS; Ma XC; Li CY; Liang LM
    Sci Rep; 2014 Apr; 4():4759. PubMed ID: 24755767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Security of the Decoy-State BB84 Protocol with Imperfect State Preparation.
    Reutov A; Tayduganov A; Mayboroda V; Fat'yanov O
    Entropy (Basel); 2023 Nov; 25(11):. PubMed ID: 37998248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite-key analysis for twin-field quantum key distribution with composable security.
    Yin HL; Chen ZB
    Sci Rep; 2019 Nov; 9(1):17113. PubMed ID: 31745131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. More optimal relativistic quantum key distribution.
    Bebrov G
    Sci Rep; 2022 Sep; 12(1):15377. PubMed ID: 36100618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental composable security decoy-state quantum key distribution using time-phase encoding.
    Yin HL; Liu P; Dai WW; Ci ZH; Gu J; Gao T; Wang QW; Shen ZY
    Opt Express; 2020 Sep; 28(20):29479-29485. PubMed ID: 33114847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources.
    Gu J; Cao XY; Fu Y; He ZW; Yin ZJ; Yin HL; Chen ZB
    Sci Bull (Beijing); 2022 Nov; 67(21):2167-2175. PubMed ID: 36545992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement-device-independent quantum key distribution with modified coherent state.
    Li M; Zhang CM; Yin ZQ; Chen W; Wang S; Guo GC; Han ZF
    Opt Lett; 2014 Feb; 39(4):880-3. PubMed ID: 24562231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patterning-effect mitigating intensity modulator for secure decoy-state quantum key distribution.
    Roberts GL; Pittaluga M; Minder M; Lucamarini M; Dynes JF; Yuan ZL; Shields AJ
    Opt Lett; 2018 Oct; 43(20):5110-5113. PubMed ID: 30320832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coherent-State-Based Twin-Field Quantum Key Distribution.
    Yin HL; Chen ZB
    Sci Rep; 2019 Oct; 9(1):14918. PubMed ID: 31624279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite-key analysis for twin-field quantum key distribution based on generalized operator dominance condition.
    Wang RQ; Yin ZQ; Lu FY; Wang R; Wang S; Chen W; Huang W; Xu BJ; Guo GC; Han ZF
    Opt Express; 2020 Jul; 28(15):22594-22605. PubMed ID: 32752517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.