These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 3622517)

  • 21. Exchange of proteins during immunofractionation of chromatin.
    Landsman D; Mendelson E; Druckmann S; Bustin M
    Exp Cell Res; 1986 Mar; 163(1):95-102. PubMed ID: 3510889
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of the central globular domain of histone H5 in chromatin structure.
    Chan DC; Biard-Roche J; Gorka C; Girardet JL; Lawrence JJ; Piette LI
    J Biomol Struct Dyn; 1984 Oct; 2(2):319-32. PubMed ID: 6443885
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Binding of antibodies against histone H1 to unfolded and folded nucleofilaments.
    Takahashi K; Tashiro Y
    Eur J Biochem; 1979 Jul; 97(2):353-60. PubMed ID: 467423
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The carboxyl-terminal domain of murine H1(0). Immunochemical and partial amino acid sequence comparisons with other H1(0)/H1/H5 histones.
    Neary BA; Stollar BD
    Eur J Biochem; 1987 Oct; 168(1):161-7. PubMed ID: 3665912
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chromatin subunits elicit species-specific antibodies against nucleoprotein antigenic determinants.
    Tahourdin CS; Bustin M
    Biochemistry; 1980 Sep; 19(19):4387-94. PubMed ID: 6157407
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A triple helix model for the structure of chromatin fiber.
    Makarov V; Dimitrov S; Smirnov V; Pashev I
    FEBS Lett; 1985 Feb; 181(2):357-61. PubMed ID: 3972115
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Serological homologies between H1 degrees and H5 include the carboxyl-terminal domain.
    Neary BA; Mura CV; Stollar BD
    J Biol Chem; 1985 Dec; 260(29):15850-5. PubMed ID: 2415523
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Small Number of Residues Can Determine if Linker Histones Are Bound On or Off Dyad in the Chromatosome.
    Zhou BR; Feng H; Ghirlando R; Li S; Schwieters CD; Bai Y
    J Mol Biol; 2016 Oct; 428(20):3948-3959. PubMed ID: 27558112
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Histone H1(0) mapping using monoclonal antibodies.
    Dousson S; Gorka C; Gilly C; Lawrence JJ
    Eur J Immunol; 1989 Jun; 19(6):1123-9. PubMed ID: 2473909
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interactions of H1 and H5 histones with polynucleotides of B- and Z-DNA conformations.
    Mura CV; Stollar BD
    Biochemistry; 1984 Dec; 23(25):6147-52. PubMed ID: 6549262
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Location of the ethidium binding sites of high affinity in chromatin.
    Genest D; Sabeur G; Wahl P; Aubel-Sadron G
    Biophys Chem; 1981 Feb; 13(1):89-96. PubMed ID: 7260330
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mapping of histone H5 sites on nucleosomes using immunoelectron microscopy.
    Frado LL; Mura CV; Stollar BD; Woodcock CL
    J Biol Chem; 1983 Oct; 258(19):11984-90. PubMed ID: 6619151
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Histone H5 promotes the association of condensed chromatin fragments to give pseudo-higher-order structures.
    Thomas JO; Rees C; Pearson EC
    Eur J Biochem; 1985 Feb; 147(1):143-51. PubMed ID: 3971973
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differing accessibility in chromatin of the antigenic sites of regions 1-58 and 63-125 of histone H2B.
    di Padua Mathieu D; Mura CV; Frado LL; Woodcock CL; Stollar BD
    J Cell Biol; 1981 Oct; 91(1):135-41. PubMed ID: 6170647
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diffusion-enhanced energy transfer investigation of histone H5 in chromatin with a fluorescently-labelled antibody fragment Fab'.
    Sarlet G; Muller S; Houssier C
    J Biomol Struct Dyn; 1992 Aug; 10(1):35-47. PubMed ID: 1418745
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Linker histones stabilize the intrinsic salt-dependent folding of nucleosomal arrays: mechanistic ramifications for higher-order chromatin folding.
    Carruthers LM; Bednar J; Woodcock CL; Hansen JC
    Biochemistry; 1998 Oct; 37(42):14776-87. PubMed ID: 9778352
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The structure of chromatin reconstituted with phosphorylated H1. Circular dichroism and thermal denaturation studies.
    Kaplan LJ; Bauer R; Morrison E; Langan TA; Fasman GD
    J Biol Chem; 1984 Jul; 259(14):8777-85. PubMed ID: 6746623
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use of protein blotting to study the DNA-binding properties of histone H1 and H1 variants.
    Wright JM; Wiersma PA; Dixon GH
    Eur J Biochem; 1987 Oct; 168(2):281-5. PubMed ID: 3665924
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DNA- and chromatin-condensing properties of rat testes H1a and H1t compared to those of rat liver H1bdec; H1t is a poor condenser of chromatin.
    Khadake JR; Rao MR
    Biochemistry; 1995 Dec; 34(48):15792-801. PubMed ID: 7495811
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Separation of nucleosomes containing histones H1 and H5.
    Bakayeva TG; Bakayev VV
    Mol Biol Rep; 1978 Oct; 4(3):185-9. PubMed ID: 739986
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.