BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

626 related articles for article (PubMed ID: 3622518)

  • 1. 1-Acyl-sn-glycerol-3-phosphate acyltransferase in maturing safflower seeds and its contribution to the non-random fatty acid distribution of triacylglycerol.
    Ichihara K; Asahi T; Fujii S
    Eur J Biochem; 1987 Sep; 167(2):339-47. PubMed ID: 3622518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. sn-Glycerol-3-phosphate acyltransferase in a particulate fraction from maturing safflower seeds.
    Ichihara K
    Arch Biochem Biophys; 1984 Aug; 232(2):685-98. PubMed ID: 6465892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diacylglycerol acyltransferase in maturing safflower seeds: its influences on the fatty acid composition of triacylglycerol and on the rate of triacylglycerol synthesis.
    Ichihara K; Takahashi T; Fujii S
    Biochim Biophys Acta; 1988 Jan; 958(1):125-9. PubMed ID: 3334861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The acylation of sn-glycerol 3-phosphate and the metabolism of phosphatidate in microsomal preparations from the developing cotyledons of safflower (Carthamus tinctorius L.) seed.
    Griffiths G; Stobart AK; Stymne S
    Biochem J; 1985 Sep; 230(2):379-88. PubMed ID: 4052051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intraorganelle localization and substrate specificities of the mitochondrial acyl-CoA: sn-glycerol-3-phosphate O-acyltransferase and acyl-CoA: 1-acyl-sn-glycerol-3-phosphate O-acyltransferase from potato tubers and pea leaves.
    Frentzen M; Neuburger M; Joyard J; Douce R
    Eur J Biochem; 1990 Jan; 187(2):395-402. PubMed ID: 2298217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of triacylglycerol biosynthesis in embryos and microsomal preparations from the developing seeds of Cuphea lanceolata.
    Bafor M; Jonsson L; Stobart AK; Stymne S
    Biochem J; 1990 Nov; 272(1):31-8. PubMed ID: 2264835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Positional and fatty acid specificity of monoacyl- and diacylglycerol 3-phosphate formation by rabbit heart microsomes.
    Zaror-Behrens G; Kako KJ
    Biochim Biophys Acta; 1976 Jul; 441(1):1-13. PubMed ID: 952977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of the acyl-CoA pool in the synthesis of polyunsaturated 18-carbon fatty acids and triacylglycerol production in the microsomes of developing safflower seeds.
    Stymne S; Stobart AK; Glad G
    Biochim Biophys Acta; 1983 Jul; 752(2):198-208. PubMed ID: 6860695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism for adaptive modification during cold acclimation of phospholipid acyl chain composition in Tetrahymena. II. Activities of 2-acyl-sn-glycerol-3-phosphorylcholine and 2-acyl-sn-glycerol-3- phosphorylethanolamine acyltransferases involving the reacylation.
    Yoshioka S; Kameyama Y; Nozawa Y
    Biochim Biophys Acta; 1984 Mar; 793(1):34-41. PubMed ID: 6704412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for the reversibility of the acyl-CoA:lysophosphatidylcholine acyltransferase in microsomal preparations from developing safflower (Carthamus tinctorius L.) cotyledons and rat liver.
    Stymne S; Stobart AK
    Biochem J; 1984 Oct; 223(2):305-14. PubMed ID: 6497849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycerol 3-phosphate acylation in microsomes of type II cells isolated from adult rat lung.
    Batenburg JJ; den Breejen JN; Yost RW; Haagsman HP; van Golde LM
    Biochim Biophys Acta; 1986 Oct; 878(3):301-9. PubMed ID: 3756197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relative suitability of 1-palmitoyl and 1-stearoyl homologues of 1-acyl-sn-glycerylphosphorylcholine and different acyl donors for phosphatidylcholine synthesis via acyl-CoA:1-acyl-sn-glycero-3-phosphorylcholine acyltransferase in rat lung microsomes.
    Holub BJ; Piekarski J; Possmayer F
    Can J Biochem; 1980 May; 58(5):434-9. PubMed ID: 7407680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triacsin C blocks de novo synthesis of glycerolipids and cholesterol esters but not recycling of fatty acid into phospholipid: evidence for functionally separate pools of acyl-CoA.
    Igal RA; Wang P; Coleman RA
    Biochem J; 1997 Jun; 324 ( Pt 2)(Pt 2):529-34. PubMed ID: 9182714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid biosynthesis in developing perilla seeds.
    Ichihara K; Suda Y
    Phytochemistry; 2003 May; 63(2):139-43. PubMed ID: 12711134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activities of acyl-CoA:diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT) in microsomal preparations of developing sunflower and safflower seeds.
    Banaś W; Sanchez Garcia A; Banaś A; Stymne S
    Planta; 2013 Jun; 237(6):1627-36. PubMed ID: 23539042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stereospecificity of monoacylglycerol and diacylglycerol acyltransferases from rat intestine as determined by chiral phase high-performance liquid chromatography.
    Lehner R; Kuksis A; Itabashi Y
    Lipids; 1993 Jan; 28(1):29-34. PubMed ID: 8446008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro effects of chlorpromazine on glycerol-3-phosphate acyl transferase and 1-acylglycerol-3-phosphate acyltransferase in rat liver microsomes.
    Yada R; Ide H; Nakazawa Y
    Biochem Pharmacol; 1986 Nov; 35(22):4083-7. PubMed ID: 3778529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of 1-palmitoyl and 1-stearoyl phosphatidylcholines from mixtures of acyl acceptors via acyl-CoA:1-acyl-sn-glycero-3-phosphorylcholine acyltransferase in liver microsomes.
    Holub BJ; MacNaughton JA; Piekarski J
    Biochim Biophys Acta; 1979 Mar; 572(3):413-22. PubMed ID: 435502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization and partial purification of acyl-CoA:glycerol 3-phosphate acyltransferase from sunflower (Helianthus annuus L.) developing seeds.
    Ruiz-López N; Garcés R; Harwood JL; Martínez-Force E
    Plant Physiol Biochem; 2010; 48(2-3):73-80. PubMed ID: 20044264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eicosapentaenoic acid reduces hepatic synthesis and secretion of triacylglycerol by decreasing the activity of acyl-coenzyme A:1,2-diacylglycerol acyltransferase.
    Rustan AC; Nossen JO; Christiansen EN; Drevon CA
    J Lipid Res; 1988 Nov; 29(11):1417-26. PubMed ID: 2853717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.