These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 36225228)
1. Cellular and molecular alterations in neurons and glial cells in inherited retinal degeneration. Martínez-Gil N; Maneu V; Kutsyr O; Fernández-Sánchez L; Sánchez-Sáez X; Sánchez-Castillo C; Campello L; Lax P; Pinilla I; Cuenca N Front Neuroanat; 2022; 16():984052. PubMed ID: 36225228 [TBL] [Abstract][Full Text] [Related]
2. Inherited Retinal Dystrophies: Role of Oxidative Stress and Inflammation in Their Physiopathology and Therapeutic Implications. Pinilla I; Maneu V; Campello L; Fernández-Sánchez L; Martínez-Gil N; Kutsyr O; Sánchez-Sáez X; Sánchez-Castillo C; Lax P; Cuenca N Antioxidants (Basel); 2022 May; 11(6):. PubMed ID: 35739983 [TBL] [Abstract][Full Text] [Related]
3. Neural remodeling in retinal degeneration. Marc RE; Jones BW; Watt CB; Strettoi E Prog Retin Eye Res; 2003 Sep; 22(5):607-55. PubMed ID: 12892644 [TBL] [Abstract][Full Text] [Related]
4. Retinal Inflammation, Cell Death and Inherited Retinal Dystrophies. Olivares-González L; Velasco S; Campillo I; Rodrigo R Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33672611 [TBL] [Abstract][Full Text] [Related]
5. PCYT1A deficiency disturbs fatty acid metabolism and induces ferroptosis in the mouse retina. Wang K; Xu H; Zou R; Zeng G; Yuan Y; Zhu X; Zhao X; Li J; Zhang L BMC Biol; 2024 Jun; 22(1):134. PubMed ID: 38858683 [TBL] [Abstract][Full Text] [Related]
6. Evolution of oxidative stress, inflammation and neovascularization in the choroid and retina in a subretinal lipid induced age-related macular degeneration model. Kim SY; Kambhampati SP; Bhutto IA; McLeod DS; Lutty GA; Kannan RM Exp Eye Res; 2021 Feb; 203():108391. PubMed ID: 33307075 [TBL] [Abstract][Full Text] [Related]
7. Single-cell transcriptome analysis of the Akimba mouse retina reveals cell-type-specific insights into the pathobiology of diabetic retinopathy. Van Hove I; De Groef L; Boeckx B; Modave E; Hu TT; Beets K; Etienne I; Van Bergen T; Lambrechts D; Moons L; Feyen JHM; Porcu M Diabetologia; 2020 Oct; 63(10):2235-2248. PubMed ID: 32734440 [TBL] [Abstract][Full Text] [Related]
8. Celastrol protects mouse retinas from bright light-induced degeneration through inhibition of oxidative stress and inflammation. Bian M; Du X; Cui J; Wang P; Wang W; Zhu W; Zhang T; Chen Y J Neuroinflammation; 2016 Feb; 13():50. PubMed ID: 26920853 [TBL] [Abstract][Full Text] [Related]
9. Astragaloside A Protects Against Photoreceptor Degeneration in Part Through Suppressing Oxidative Stress and DNA Damage-Induced Necroptosis and Inflammation in the Retina. Li M; Xu J; Wang Y; Du X; Zhang T; Chen Y J Inflamm Res; 2022; 15():2995-3020. PubMed ID: 35645574 [TBL] [Abstract][Full Text] [Related]
11. Azithromycin Protects Retinal Glia Against Oxidative Stress-Induced Morphological Changes, Inflammation, and Cell Death. Mahaling B; Pandala N; Wang HC; Lavik EB ACS Bio Med Chem Au; 2022 Oct; 2(5):499-508. PubMed ID: 37101900 [TBL] [Abstract][Full Text] [Related]
12. Retinal Oxygenation in Inherited Diseases of the Retina. Türksever C; López Torres LT; Valmaggia C; Todorova MG Genes (Basel); 2021 Feb; 12(2):. PubMed ID: 33672973 [TBL] [Abstract][Full Text] [Related]
13. Gradual Increase in Environmental Light Intensity Induces Oxidative Stress and Inflammation and Accelerates Retinal Neurodegeneration. Kutsyr O; Sánchez-Sáez X; Martínez-Gil N; de Juan E; Lax P; Maneu V; Cuenca N Invest Ophthalmol Vis Sci; 2020 Aug; 61(10):1. PubMed ID: 32744596 [TBL] [Abstract][Full Text] [Related]
14. Apigenin-7-diglucuronide protects retinas against bright light-induced photoreceptor degeneration through the inhibition of retinal oxidative stress and inflammation. Bian M; Zhang Y; Du X; Xu J; Cui J; Gu J; Zhu W; Zhang T; Chen Y Brain Res; 2017 May; 1663():141-150. PubMed ID: 28336272 [TBL] [Abstract][Full Text] [Related]
15. Cuscuta chinensis Lam. Protects Against Light-Induced Retinal Degeneration: Therapeutic Implications for Photoreceptor Degenerative Disorders. Wu H; Zhu B; Li D; Xu J; Chang J; Du X; Cui J; Zhang N; Zhang T; Chen Y Front Pharmacol; 2022; 13():904849. PubMed ID: 35754507 [No Abstract] [Full Text] [Related]
16. Gene therapy for inherited retinal diseases: progress and possibilities. Hu ML; Edwards TL; O'Hare F; Hickey DG; Wang JH; Liu Z; Ayton LN Clin Exp Optom; 2021 May; 104(4):444-454. PubMed ID: 33689657 [TBL] [Abstract][Full Text] [Related]
17. Mitochondrial Gymnastics in Retinal Cells: A Resilience Mechanism Against Oxidative Stress and Neurodegeneration. Mirra S; Marfany G Adv Exp Med Biol; 2019; 1185():513-517. PubMed ID: 31884663 [TBL] [Abstract][Full Text] [Related]
18. Formation of 53BP1 foci and ATM activation under oxidative stress is facilitated by RNA:DNA hybrids and loss of ATM-53BP1 expression promotes photoreceptor cell survival in mice. Bhatia V; Valdés-Sánchez L; Rodriguez-Martinez D; Bhattacharya SS F1000Res; 2018; 7():1233. PubMed ID: 30345028 [No Abstract] [Full Text] [Related]
19. Reduced photoreceptor death and improved retinal function during retinal degeneration in mice lacking innate immunity adaptor protein MyD88. Syeda S; Patel AK; Lee T; Hackam AS Exp Neurol; 2015 May; 267():1-12. PubMed ID: 25725353 [TBL] [Abstract][Full Text] [Related]
20. Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases. Cuenca N; Fernández-Sánchez L; Campello L; Maneu V; De la Villa P; Lax P; Pinilla I Prog Retin Eye Res; 2014 Nov; 43():17-75. PubMed ID: 25038518 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]