These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 36225254)

  • 1. Assessing the effect of forcefield parameter sets on the accuracy of relative binding free energy calculations.
    Sun S; Huggins DJ
    Front Mol Biosci; 2022; 9():972162. PubMed ID: 36225254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing the Performance of Different AMBER Protein Forcefields, Partial Charge Assignments, and Water Models for Absolute Binding Free Energy Calculations.
    Huggins DJ
    J Chem Theory Comput; 2022 Apr; 18(4):2616-2630. PubMed ID: 35266690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein-Ligand Binding Free Energy Calculations with FEP.
    Wang L; Chambers J; Abel R
    Methods Mol Biol; 2019; 2022():201-232. PubMed ID: 31396905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advancing Drug Discovery through Enhanced Free Energy Calculations.
    Abel R; Wang L; Harder ED; Berne BJ; Friesner RA
    Acc Chem Res; 2017 Jul; 50(7):1625-1632. PubMed ID: 28677954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated, Accurate, and Scalable Relative Protein-Ligand Binding Free-Energy Calculations Using Lambda Dynamics.
    Raman EP; Paul TJ; Hayes RL; Brooks CL
    J Chem Theory Comput; 2020 Dec; 16(12):7895-7914. PubMed ID: 33201701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large scale relative protein ligand binding affinities using non-equilibrium alchemy.
    Gapsys V; Pérez-Benito L; Aldeghi M; Seeliger D; van Vlijmen H; Tresadern G; de Groot BL
    Chem Sci; 2019 Dec; 11(4):1140-1152. PubMed ID: 34084371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QligFEP: an automated workflow for small molecule free energy calculations in Q.
    Jespers W; Esguerra M; Åqvist J; Gutiérrez-de-Terán H
    J Cheminform; 2019 Apr; 11(1):26. PubMed ID: 30941533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FEP Protocol Builder: Optimization of Free Energy Perturbation Protocols Using Active Learning.
    de Oliveira C; Leswing K; Feng S; Kanters R; Abel R; Bhat S
    J Chem Inf Model; 2023 Sep; 63(17):5592-5603. PubMed ID: 37594480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relative Binding Free Energy Calculations Applied to Protein Homology Models.
    Cappel D; Hall ML; Lenselink EB; Beuming T; Qi J; Bradner J; Sherman W
    J Chem Inf Model; 2016 Dec; 56(12):2388-2400. PubMed ID: 28024402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The maximal and current accuracy of rigorous protein-ligand binding free energy calculations.
    Ross GA; Lu C; Scarabelli G; Albanese SK; Houang E; Abel R; Harder ED; Wang L
    Commun Chem; 2023 Oct; 6(1):222. PubMed ID: 37838760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of Different Automated Binding Pose Generation Approaches on Relative Binding Free Energy Simulations.
    Cappel D; Jerome S; Hessler G; Matter H
    J Chem Inf Model; 2020 Mar; 60(3):1432-1444. PubMed ID: 31986249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a quantum mechanics-based free-energy perturbation method: use in the calculation of relative solvation free energies.
    Reddy MR; Singh UC; Erion MD
    J Am Chem Soc; 2004 May; 126(20):6224-5. PubMed ID: 15149207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relative Binding Free Energy Calculations in Drug Discovery: Recent Advances and Practical Considerations.
    Cournia Z; Allen B; Sherman W
    J Chem Inf Model; 2017 Dec; 57(12):2911-2937. PubMed ID: 29243483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the Predictive Power of Relative Binding Free Energy Calculations for Test Cases Involving Displacement of Binding Site Water Molecules.
    Wahl J; Smieško M
    J Chem Inf Model; 2019 Feb; 59(2):754-765. PubMed ID: 30640456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale application of free energy perturbation calculations for antibody design.
    Zhu F; Bourguet FA; Bennett WFD; Lau EY; Arrildt KT; Segelke BW; Zemla AT; Desautels TA; Faissol DM
    Sci Rep; 2022 Jul; 12(1):12489. PubMed ID: 35864134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling Local Structural Rearrangements Using FEP/REST: Application to Relative Binding Affinity Predictions of CDK2 Inhibitors.
    Wang L; Deng Y; Knight JL; Wu Y; Kim B; Sherman W; Shelley JC; Lin T; Abel R
    J Chem Theory Comput; 2013 Feb; 9(2):1282-93. PubMed ID: 26588769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive, Open-Source, and Automated Workflow for Multisite λ-Dynamics in Lead Optimization.
    Hu R; Zhang J; Kang Y; Wang Z; Pan P; Deng Y; Hsieh CY; Hou T
    J Chem Theory Comput; 2024 Feb; 20(3):1465-1478. PubMed ID: 38300792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing Water Sampling in Free Energy Calculations with Grand Canonical Monte Carlo.
    Ross GA; Russell E; Deng Y; Lu C; Harder ED; Abel R; Wang L
    J Chem Theory Comput; 2020 Oct; 16(10):6061-6076. PubMed ID: 32955877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CL-FEP: An End-State Free Energy Perturbation Approach.
    Ruiz-Blanco YB; Sanchez-Garcia E
    J Chem Theory Comput; 2020 Mar; 16(3):1396-1410. PubMed ID: 32109052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using physics-based pose predictions and free energy perturbation calculations to predict binding poses and relative binding affinities for FXR ligands in the D3R Grand Challenge 2.
    Athanasiou C; Vasilakaki S; Dellis D; Cournia Z
    J Comput Aided Mol Des; 2018 Jan; 32(1):21-44. PubMed ID: 29119352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.