BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 36225316)

  • 1. Epigenetic disorders: Lessons from the animals-animal models in chromatinopathies.
    Di Fede E; Grazioli P; Lettieri A; Parodi C; Castiglioni S; Taci E; Colombo EA; Ancona S; Priori A; Gervasini C; Massa V
    Front Cell Dev Biol; 2022; 10():979512. PubMed ID: 36225316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatin Imbalance as the Vertex Between Fetal Valproate Syndrome and Chromatinopathies.
    Parodi C; Di Fede E; Peron A; Viganò I; Grazioli P; Castiglioni S; Finnell RH; Gervasini C; Vignoli A; Massa V
    Front Cell Dev Biol; 2021; 9():654467. PubMed ID: 33959609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cornelia de Lange Syndrome as Paradigm of Chromatinopathies.
    Parenti I; Kaiser FJ
    Front Neurosci; 2021; 15():774950. PubMed ID: 34803598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The omics era: a nexus of untapped potential for Mendelian chromatinopathies.
    Nava AA; Arboleda VA
    Hum Genet; 2024 Apr; 143(4):475-495. PubMed ID: 37115317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromatinopathies: insight in clinical aspects and underlying epigenetic changes.
    Bukowska-Olech E; Majchrzak-Celińska A; Przyborska M; Jamsheer A
    J Appl Genet; 2024 May; 65(2):287-301. PubMed ID: 38180712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Syndromic Craniosynostosis Can Define New Candidate Genes for Suture Development or Result from the Non-specifc Effects of Pleiotropic Genes: Rasopathies and Chromatinopathies as Examples.
    Zollino M; Lattante S; Orteschi D; Frangella S; Doronzio PN; Contaldo I; Mercuri E; Marangi G
    Front Neurosci; 2017; 11():587. PubMed ID: 29093661
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Castiglioni S; Di Fede E; Bernardelli C; Lettieri A; Parodi C; Grazioli P; Colombo EA; Ancona S; Milani D; Ottaviano E; Borghi E; Massa V; Ghelma F; Vignoli A; Lesma E; Gervasini C
    Genes (Basel); 2022 Mar; 13(3):. PubMed ID: 35328068
    [No Abstract]   [Full Text] [Related]  

  • 8. DNA methylation episignature testing improves molecular diagnosis of Mendelian chromatinopathies.
    Kerkhof J; Squeo GM; McConkey H; Levy MA; Piemontese MR; Castori M; Accadia M; Biamino E; Della Monica M; Di Giacomo MC; Gervasini C; Maitz S; Melis D; Milani D; Piccione M; Prontera P; Selicorni A; Sadikovic B; Merla G
    Genet Med; 2022 Jan; 24(1):51-60. PubMed ID: 34906459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromatinopathies: A focus on Cornelia de Lange syndrome.
    Avagliano L; Parenti I; Grazioli P; Di Fede E; Parodi C; Mariani M; Kaiser FJ; Selicorni A; Gervasini C; Massa V
    Clin Genet; 2020 Jan; 97(1):3-11. PubMed ID: 31721174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The phenomenal epigenome in neurodevelopmental disorders.
    Ciptasari U; van Bokhoven H
    Hum Mol Genet; 2020 Sep; 29(R1):R42-R50. PubMed ID: 32766754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin Structure and Dynamics: Focus on Neuronal Differentiation and Pathological Implication.
    Nothof SA; Magdinier F; Van-Gils J
    Genes (Basel); 2022 Apr; 13(4):. PubMed ID: 35456445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Animal Models to Study MicroRNA Function.
    Pal AS; Kasinski AL
    Adv Cancer Res; 2017; 135():53-118. PubMed ID: 28882225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The genetics of autism.
    Muhle R; Trentacoste SV; Rapin I
    Pediatrics; 2004 May; 113(5):e472-86. PubMed ID: 15121991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expanding the phenotype associated to KMT2A variants: overlapping clinical signs between Wiedemann-Steiner and Rubinstein-Taybi syndromes.
    Di Fede E; Massa V; Augello B; Squeo G; Scarano E; Perri AM; Fischetto R; Causio FA; Zampino G; Piccione M; Curridori E; Mazza T; Castellana S; Larizza L; Ghelma F; Colombo EA; Gandini MC; Castori M; Merla G; Milani D; Gervasini C
    Eur J Hum Genet; 2021 Jan; 29(1):88-98. PubMed ID: 32641752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput screening and small animal models, where are we?
    Giacomotto J; Ségalat L
    Br J Pharmacol; 2010 May; 160(2):204-16. PubMed ID: 20423335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling RASopathies with Genetically Modified Mouse Models.
    Hernández-Porras I; Guerra C
    Methods Mol Biol; 2017; 1487():379-408. PubMed ID: 27924582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental genetics with model organisms.
    Irion U; Nüsslein-Volhard C
    Proc Natl Acad Sci U S A; 2022 Jul; 119(30):e2122148119. PubMed ID: 35858396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CpG island clusters and pro-epigenetic selection for CpGs in protein-coding exons of HOX and other transcription factors.
    Branciamore S; Chen ZX; Riggs AD; Rodin SN
    Proc Natl Acad Sci U S A; 2010 Aug; 107(35):15485-90. PubMed ID: 20716685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatin dynamics in human brain development and disease.
    Valencia AM; Pașca SP
    Trends Cell Biol; 2022 Feb; 32(2):98-101. PubMed ID: 34610892
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 15.