BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36225530)

  • 1. AntiSplodge: a neural-network-based RNA-profile deconvolution pipeline designed for spatial transcriptomics.
    Lund JB; Lindberg EL; Maatz H; Pottbaecker F; Hübner N; Lippert C
    NAR Genom Bioinform; 2022 Dec; 4(4):lqac073. PubMed ID: 36225530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SD2: spatially resolved transcriptomics deconvolution through integration of dropout and spatial information.
    Li H; Li H; Zhou J; Gao X
    Bioinformatics; 2022 Oct; 38(21):4878-4884. PubMed ID: 36063455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SpatialDDLS: an R package to deconvolute spatial transcriptomics data using neural networks.
    Mañanes D; Rivero-García I; Relaño C; Torres M; Sancho D; Jimenez-Carretero D; Torroja C; Sánchez-Cabo F
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38366652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spotless, a reproducible pipeline for benchmarking cell type deconvolution in spatial transcriptomics.
    Sang-Aram C; Browaeys R; Seurinck R; Saeys Y
    Elife; 2024 May; 12():. PubMed ID: 38787371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DSTG: deconvoluting spatial transcriptomics data through graph-based artificial intelligence.
    Song Q; Su J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33480403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benchmarking and integration of methods for deconvoluting spatial transcriptomic data.
    Yan L; Sun X
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36515467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SpatialcoGCN: deconvolution and spatial information-aware simulation of spatial transcriptomics data via deep graph co-embedding.
    Yin W; Wan Y; Zhou Y
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38557675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EnDecon: cell type deconvolution of spatially resolved transcriptomics data via ensemble learning.
    Tu JJ; Li HS; Yan H; Zhang XF
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36610709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SPACEL: deep learning-based characterization of spatial transcriptome architectures.
    Xu H; Wang S; Fang M; Luo S; Chen C; Wan S; Wang R; Tang M; Xue T; Li B; Lin J; Qu K
    Nat Commun; 2023 Nov; 14(1):7603. PubMed ID: 37990022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ScType enables fast and accurate cell type identification from spatial transcriptomics data.
    Nader K; Tasci M; Ianevski A; Erickson A; Verschuren EW; Aittokallio T; Miihkinen M
    Bioinformatics; 2024 Jun; ():. PubMed ID: 38936341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-cell level deconvolution, convolution, and clustering in spatial transcriptomics by aligning spot level transcriptome to nuclear morphology.
    Zhu S; Kubota N; Wang S; Wang T; Xiao G; Hoshida Y
    bioRxiv; 2023 Dec; ():. PubMed ID: 38187541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ST Pipeline: an automated pipeline for spatial mapping of unique transcripts.
    Navarro JF; Sjöstrand J; Salmén F; Lundeberg J; Ståhl PL
    Bioinformatics; 2017 Aug; 33(16):2591-2593. PubMed ID: 28398467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial Transcriptomic Cell-type Deconvolution Using Graph Neural Networks.
    Li Y; Luo Y
    bioRxiv; 2023 Jun; ():. PubMed ID: 37333198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data.
    Miller BF; Huang F; Atta L; Sahoo A; Fan J
    Nat Commun; 2022 Apr; 13(1):2339. PubMed ID: 35487922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RETROFIT: Reference-free deconvolution of cell-type mixtures in spatial transcriptomics.
    Singh R; He X; Park AK; Hardison RC; Zhu X; Li Q
    bioRxiv; 2023 Jun; ():. PubMed ID: 37333291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A systematic evaluation of state-of-the-art deconvolution methods in spatial transcriptomics: insights from cardiovascular disease and chronic kidney disease.
    Slabowska AO; Pyke C; Hvid H; Jessen LE; Baumgart S; Das V
    Front Bioinform; 2024; 4():1352594. PubMed ID: 38601476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CellsFromSpace: a fast, accurate, and reference-free tool to deconvolve and annotate spatially distributed omics data.
    Thuilliez C; Moquin-Beaudry G; Khneisser P; Marques Da Costa ME; Karkar S; Boudhouche H; Drubay D; Audinot B; Geoerger B; Scoazec JY; Gaspar N; Marchais A
    Bioinform Adv; 2024; 4(1):vbae081. PubMed ID: 38915885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. STtools: A Comprehensive Software Pipeline for Ultra-high Resolution Spatial Transcriptomics Data.
    Xi J; Lee JH; Kang HM; Jun G
    Bioinform Adv; 2022; 2(1):. PubMed ID: 36284674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comprehensive benchmarking with practical guidelines for cellular deconvolution of spatial transcriptomics.
    Li H; Zhou J; Li Z; Chen S; Liao X; Zhang B; Zhang R; Wang Y; Sun S; Gao X
    Nat Commun; 2023 Mar; 14(1):1548. PubMed ID: 36941264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A unified pipeline for FISH spatial transcriptomics.
    Cisar C; Keener N; Ruffalo M; Paten B
    Cell Genom; 2023 Sep; 3(9):100384. PubMed ID: 37719153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.