These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
335 related articles for article (PubMed ID: 36226269)
21. A machine learning approach for predicting radiation-induced hypothyroidism in patients with nasopharyngeal carcinoma undergoing tomotherapy. Quan KR; Lin WR; Hong JB; Lin YH; Chen KQ; Chen JH; Cheng PJ Sci Rep; 2024 Apr; 14(1):8436. PubMed ID: 38600141 [TBL] [Abstract][Full Text] [Related]
22. Development and validation of an MRI-based radiomic model for predicting overall survival in nasopharyngeal carcinoma patients with local residual tumors after intensity-modulated radiotherapy. Jiang S; Han L; Liang L; Long L BMC Med Imaging; 2022 Oct; 22(1):174. PubMed ID: 36195860 [TBL] [Abstract][Full Text] [Related]
23. Radiomics-based machine learning in the differentiation of benign and malignant bowel wall thickening radiomics in bowel wall thickening. Bülbül HM; Burakgazi G; Kesimal U; Kaba E Jpn J Radiol; 2024 Aug; 42(8):872-879. PubMed ID: 38536559 [TBL] [Abstract][Full Text] [Related]
24. Cervical spine osteoradionecrosis or bone metastasis after radiotherapy for nasopharyngeal carcinoma? The MRI-based radiomics for characterization. Zhong X; Li L; Jiang H; Yin J; Lu B; Han W; Li J; Zhang J BMC Med Imaging; 2020 Sep; 20(1):104. PubMed ID: 32873238 [TBL] [Abstract][Full Text] [Related]
25. Machine learning models combining computed tomography semantic features and selected clinical variables for accurate prediction of the pathological grade of bladder cancer. Deng Z; Dong W; Xiong S; Jin D; Zhou H; Zhang L; Xie L; Deng Y; Xu R; Fan B Front Oncol; 2023; 13():1166245. PubMed ID: 37223680 [TBL] [Abstract][Full Text] [Related]
26. A nomogram based on pretreatment CT radiomics features for predicting complete response to chemoradiotherapy in patients with esophageal squamous cell cancer. Luo HS; Huang SF; Xu HY; Li XY; Wu SX; Wu DH Radiat Oncol; 2020 Oct; 15(1):249. PubMed ID: 33121507 [TBL] [Abstract][Full Text] [Related]
27. Computed tomography-based deep-learning prediction of induction chemotherapy treatment response in locally advanced nasopharyngeal carcinoma. Yang Y; Wang M; Qiu K; Wang Y; Ma X Strahlenther Onkol; 2022 Feb; 198(2):183-193. PubMed ID: 34817635 [TBL] [Abstract][Full Text] [Related]
28. Differentiation of Lung Metastases Originated From Different Primary Tumors Using Radiomics Features Based on CT Imaging. Shang H; Li J; Jiao T; Fang C; Li K; Yin D; Zeng Q Acad Radiol; 2023 Jan; 30(1):40-46. PubMed ID: 35577699 [TBL] [Abstract][Full Text] [Related]
29. CT radiomics-based model for predicting TMB and immunotherapy response in non-small cell lung cancer. Wang J; Wang J; Huang X; Zhou Y; Qi J; Sun X; Nie J; Hu Z; Wang S; Hong B; Wang H BMC Med Imaging; 2024 Feb; 24(1):45. PubMed ID: 38360550 [TBL] [Abstract][Full Text] [Related]
30. The predictive potential of contrast-enhanced computed tomography based radiomics in the preoperative staging of cT4 gastric cancer. Liu B; Zhang D; Wang H; Wang H; Zhang P; Zhang D; Zhang Q; Zhang J Quant Imaging Med Surg; 2022 Nov; 12(11):5222-5238. PubMed ID: 36330185 [TBL] [Abstract][Full Text] [Related]
31. Analysis of preoperative computed tomography radiomics and clinical factors for predicting postsurgical recurrence of papillary thyroid carcinoma. Xu H; Wu W; Zhao Y; Liu Z; Bao D; Li L; Lin M; Zhang Y; Zhao X; Luo D Cancer Imaging; 2023 Dec; 23(1):118. PubMed ID: 38098119 [TBL] [Abstract][Full Text] [Related]
32. CT radiomics based on different machine learning models for classifying gross tumor volume and normal liver tissue in hepatocellular carcinoma. Zhang HW; Huang DL; Wang YR; Zhong HS; Pang HW Cancer Imaging; 2024 Jan; 24(1):20. PubMed ID: 38279133 [TBL] [Abstract][Full Text] [Related]
33. Machine Learning Methods for Optimal Radiomics-Based Differentiation Between Recurrence and Inflammation: Application to Nasopharyngeal Carcinoma Post-therapy PET/CT Images. Du D; Feng H; Lv W; Ashrafinia S; Yuan Q; Wang Q; Yang W; Feng Q; Chen W; Rahmim A; Lu L Mol Imaging Biol; 2020 Jun; 22(3):730-738. PubMed ID: 31338709 [TBL] [Abstract][Full Text] [Related]
34. Nomogram Based on Clinical and Radiomics Data for Predicting Radiation-induced Temporal Lobe Injury in Patients with Non-metastatic Stage T4 Nasopharyngeal Carcinoma. Bin X; Zhu C; Tang Y; Li R; Ding Q; Xia W; Tang Y; Tang X; Yao D; Tang A Clin Oncol (R Coll Radiol); 2022 Dec; 34(12):e482-e492. PubMed ID: 36008245 [TBL] [Abstract][Full Text] [Related]
35. MRI-based random survival Forest model improves prediction of progression-free survival to induction chemotherapy plus concurrent Chemoradiotherapy in Locoregionally Advanced nasopharyngeal carcinoma. Pei W; Wang C; Liao H; Chen X; Wei Y; Huang X; Liang X; Bao H; Su D; Jin G BMC Cancer; 2022 Jul; 22(1):739. PubMed ID: 35794590 [TBL] [Abstract][Full Text] [Related]
36. A prediction model for degree of differentiation for resectable locally advanced esophageal squamous cell carcinoma based on CT images using radiomics and machine-learning. Kawahara D; Murakami Y; Tani S; Nagata Y Br J Radiol; 2021 Aug; 94(1124):20210525. PubMed ID: 34235955 [TBL] [Abstract][Full Text] [Related]
37. CT Radiomics Combined With Clinicopathological Features to Predict Invasive Mucinous Adenocarcinoma in Patients With Lung Adenocarcinoma. Zhang J; Hao L; Li M; Xu Q; Shi G Technol Cancer Res Treat; 2023; 22():15330338231174306. PubMed ID: 37278046 [No Abstract] [Full Text] [Related]
38. A radiomics model based on aortic computed tomography angiography: the impact on predicting the prognosis of patients with aortic intramural hematoma (IMH). Ding Y; Zhang C; Wu W; Pu J; Zhao X; Zhang H; Zhao L; Schoenhagen P; Liu S; Ma X Quant Imaging Med Surg; 2023 Feb; 13(2):598-609. PubMed ID: 36819258 [TBL] [Abstract][Full Text] [Related]
39. The value of CT-based radiomics in predicting the prognosis of acute pancreatitis. Xue M; Lin S; Xie D; Wang H; Gao Q; Zou L; Xiao X; Jia Y Front Med (Lausanne); 2023; 10():1289295. PubMed ID: 38093973 [TBL] [Abstract][Full Text] [Related]
40. A nomogram combined with radiomics features, albuminuria, and metabolic syndrome to predict the risk of myometrial invasion of bladder cancer. Zhou Q; Zhang Z; Ang X; Zhang H; Ouyang J Transl Cancer Res; 2021 Jul; 10(7):3177-3191. PubMed ID: 35116625 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]