BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 3622635)

  • 1. Genetic demonstration that the mutationally expressed nucleobase transporter of mouse S49 cells is nonconcentrative.
    Beck J; Ullman B
    Exp Cell Res; 1987 Jul; 171(1):254-8. PubMed ID: 3622635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of the high-affinity purine nucleobase transporter in mutant mouse S49 cells does not require a functional wild-type nucleoside-nucleobase transporter.
    Ullman B; Patrick J; McCartan K
    Mol Cell Biol; 1987 Jan; 7(1):97-103. PubMed ID: 3561404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic demonstration of bidirectionality in the high affinity purine base transporter of mutant mouse S49 cells.
    Beck JT; Ullman B
    J Biol Chem; 1987 Feb; 262(5):2393-7. PubMed ID: 3029078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of a novel high-affinity purine nucleobase transport function in mutant mammalian T lymphoblasts.
    Aronow B; Toll D; Patrick J; Hollingsworth P; McCartan K; Ullman B
    Mol Cell Biol; 1986 Aug; 6(8):2957-62. PubMed ID: 3491294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of a novel high affinity purine base transport system in mutant mouse S49 cells does not require a functional nucleoside transporter.
    Beck J; Ullman B
    Adv Exp Med Biol; 1989; 253B():525-32. PubMed ID: 2610142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. S49 mouse lymphoma cells are deficient in hypoxanthine transport.
    Plagemann PG; Wohlhueter RM
    Biochim Biophys Acta; 1986 Feb; 855(1):25-32. PubMed ID: 3942743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incomplete nucleoside transport deficiency with increased hypoxanthine transport capability in mutant T-lymphoblastoid cells.
    Aronow B; Hollingsworth P; Patrick J; Ullman B
    Mol Cell Biol; 1986 Apr; 6(4):1296-303. PubMed ID: 3491289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical assay of inhibitors of metabolic cooperation.
    Vitkauskas G; Kole J; Canellakis ES
    Exp Cell Res; 1983 Apr; 145(1):15-30. PubMed ID: 6852123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of nucleobase transport in rabbit choroid plexus. Evidence for a Na(+)-dependent nucleobase transporter with broad substrate selectivity.
    Washington CB; Giacomini KM
    J Biol Chem; 1995 Sep; 270(39):22816-9. PubMed ID: 7559412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High affinity sodium-dependent nucleobase transport in cultured renal epithelial cells (LLC-PK1).
    Griffith DA; Jarvis SM
    J Biol Chem; 1993 Sep; 268(27):20085-90. PubMed ID: 8376366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleoside and nucleobase transport and metabolism in wild type and nucleoside transport-deficient Aedes albopictus cells.
    Abidi TF; Plagemann PG; Woffendin C; Stollar V
    Biochim Biophys Acta; 1987 Mar; 897(3):431-44. PubMed ID: 3814594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a sodium-dependent concentrative nucleobase-transport system in guinea-pig kidney cortex brush-border membrane vesicles.
    Griffith DA; Jarvis SM
    Biochem J; 1994 Nov; 303 ( Pt 3)(Pt 3):901-5. PubMed ID: 7980460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypoxanthine transport by cultured Chinese hamster lung fibroblasts.
    Alford BL; Barnes EM
    J Biol Chem; 1976 Aug; 251(16):4823-7. PubMed ID: 182679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of hypoxanthine by human diploid skin fibroblasts deficient in hypoxanthine-guanine phosphoribosyltransferase.
    Murphy E; Holland MJ; Cox RP
    Exp Cell Res; 1977 Sep; 108(2):461-4. PubMed ID: 891652
    [No Abstract]   [Full Text] [Related]  

  • 15. Hypoxanthine transport in normal and hypoxanthine guanine phosphoribosyltransferase (HGPRT) deficient diploid human lymphoblasts.
    Epstein J; Littlefield JW
    Exp Cell Res; 1977 May; 106(2):247-51. PubMed ID: 862666
    [No Abstract]   [Full Text] [Related]  

  • 16. Purine-cytosine permease of Saccharomyces cerevisiae. Effect of external pH on nucleobase uptake and binding.
    Brèthes D; Napias C; Torchut E; Chevallier J
    Eur J Biochem; 1992 Dec; 210(3):785-91. PubMed ID: 1483463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purine nucleobase transport in human erythrocytes. Reinvestigation with a novel "inhibitor-stop" assay.
    Domin BA; Mahony WB; Zimmerman TP
    J Biol Chem; 1988 Jul; 263(19):9276-84. PubMed ID: 3379069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The regulation of hypoxanthine guanine phosphoribosyl transferase activity through transfer of PRPP by metabolic cooperation.
    Vitkauskas G; Canellakis ES
    Exp Cell Res; 1984 Jun; 152(2):541-51. PubMed ID: 6202536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel mechanism of mycophenolic acid resistance in the protozoan parasite Tritrichomonas foetus.
    Hedstrom L; Cheung KS; Wang CC
    Biochem Pharmacol; 1990 Jan; 39(1):151-60. PubMed ID: 1967525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of adenine, hypoxanthine and uracil into Escherichia coli.
    Burton K
    Biochem J; 1977 Nov; 168(2):195-204. PubMed ID: 413544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.