BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 36226361)

  • 21. Magnetic resonance imaging contrast-enhancement with superparamagnetic iron oxide nanoparticles amplifies macrophage foam cell apoptosis in human and murine atherosclerosis.
    Segers FME; Ruder AV; Westra MM; Lammers T; Dadfar SM; Roemhild K; Lam TS; Kooi ME; Cleutjens KBJM; Verheyen FK; Schurink GWH; Haenen GR; van Berkel TJC; Bot I; Halvorsen B; Sluimer JC; Biessen EAL
    Cardiovasc Res; 2023 Jan; 118(17):3346-3359. PubMed ID: 35325057
    [TBL] [Abstract][Full Text] [Related]  

  • 22. T1-weighted MRI of targeting atherosclerotic plaque based on CD40 expression on engulfed USPIO's cell surface.
    Huang C; Huang W; Meng Y; Zhou C; Wang X; Zhang C; Tian Y; Wei W; Li Y; Zhou Q; Chen W; Tang Y
    Biomed Mater; 2024 Jan; 19(2):. PubMed ID: 38215489
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pharmacological inhibition of C-C chemokine receptor 2 decreases macrophage infiltration in the aortic root of the human C-C chemokine receptor 2/apolipoprotein E-/- mouse: magnetic resonance imaging assessment.
    Olzinski AR; Turner GH; Bernard RE; Karr H; Cornejo CA; Aravindhan K; Hoang B; Ringenberg MA; Qin P; Goodman KB; Willette RN; Macphee CH; Jucker BM; Sehon CA; Gough PJ
    Arterioscler Thromb Vasc Biol; 2010 Feb; 30(2):253-9. PubMed ID: 19965779
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of ultrasmall superparamagnetic iron-oxide (USPIO) enhanced MRI with ferumoxytol to quantify arterial wall inflammation.
    Smits LP; Tiessens F; Zheng KH; Stroes ES; Nederveen AJ; Coolen BF
    Atherosclerosis; 2017 Aug; 263():211-218. PubMed ID: 28662398
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monitoring plaque inflammation in atherosclerotic rabbits with an iron oxide (P904) and (18)F-FDG using a combined PET/MR scanner.
    Millon A; Dickson SD; Klink A; Izquierdo-Garcia D; Bini J; Lancelot E; Ballet S; Robert P; Mateo de Castro J; Corot C; Fayad ZA
    Atherosclerosis; 2013 Jun; 228(2):339-45. PubMed ID: 23582588
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Noninvasive detection of macrophage-rich atherosclerotic plaque in hyperlipidemic rabbits using "positive contrast" magnetic resonance imaging.
    Korosoglou G; Weiss RG; Kedziorek DA; Walczak P; Gilson WD; Schär M; Sosnovik DE; Kraitchman DL; Boston RC; Bulte JW; Weissleder R; Stuber M
    J Am Coll Cardiol; 2008 Aug; 52(6):483-91. PubMed ID: 18672170
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identifying Vulnerable Atherosclerotic Plaque in Rabbits Using DMSA-USPIO Enhanced Magnetic Resonance Imaging to Investigate the Effect of Atorvastatin.
    Qi C; Deng L; Li D; Wu W; Gong L; Li Y; Zhang Q; Zhang T; Zhang C; Zhang Y
    PLoS One; 2015; 10(5):e0125677. PubMed ID: 25973795
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits.
    Schmitz SA; Coupland SE; Gust R; Winterhalter S; Wagner S; Kresse M; Semmler W; Wolf KJ
    Invest Radiol; 2000 Aug; 35(8):460-71. PubMed ID: 10946973
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Iron-oxide-enhanced MR imaging of inflammatory atherosclerotic lesions: overview of experimental and initial clinical results].
    Schmitz SA
    Rofo; 2003 Apr; 175(4):469-76. PubMed ID: 12677500
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging.
    Kooi ME; Cappendijk VC; Cleutjens KB; Kessels AG; Kitslaar PJ; Borgers M; Frederik PM; Daemen MJ; van Engelshoven JM
    Circulation; 2003 May; 107(19):2453-8. PubMed ID: 12719280
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of atherosclerotic lesions using dextran- and mannan-dextran-coated USPIO: MRI analysis and pathological findings.
    Tsuchiya K; Nitta N; Sonoda A; Nitta-Seko A; Ohta S; Takahashi M; Murata K; Mukaisho K; Shiomi M; Tabata Y; Nohara S
    Int J Nanomedicine; 2012; 7():2271-80. PubMed ID: 22619561
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polymer-Lipid Hybrid Theranostic Nanoparticles Co-Delivering Ultrasmall Superparamagnetic Iron Oxide and Paclitaxel for Targeted Magnetic Resonance Imaging and Therapy in Atherosclerotic Plaque.
    Dong Y; Chen H; Chen C; Zhang X; Tian X; Zhang Y; Shi Z; Liu Q
    J Biomed Nanotechnol; 2016 Jun; 12(6):1245-57. PubMed ID: 27319218
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detection of Vulnerable Atherosclerotic Plaques in Experimental Atherosclerosis with the USPIO-Enhanced MRI.
    Qi CM; Du L; Wu WH; Li DY; Hao J; Gong L; Deng L; Zhang T; Zhang C; Zhang Y
    Cell Biochem Biophys; 2015 Nov; 73(2):331-337. PubMed ID: 27352319
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potential of magnetic resonance plaque imaging using superparamagnetic particles of iron oxide for the detection of carotid plaque.
    Kawahara I; Nakamoto M; Kitagawa N; Tsutsumi K; Nagata I; Morikawa M; Hayashi T
    Neurol Med Chir (Tokyo); 2008 Apr; 48(4):157-61; discussion 161-2. PubMed ID: 18434693
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detection of vulnerable atherosclerosis plaques with a dual-modal single-photon-emission computed tomography/magnetic resonance imaging probe targeting apoptotic macrophages.
    Cheng D; Li X; Zhang C; Tan H; Wang C; Pang L; Shi H
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2847-55. PubMed ID: 25569777
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anti-inflammatory drug evaluation in ApoE-/- mice by ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging.
    Sigovan M; Kaye E; Lancelot E; Corot C; Provost N; Majd Z; Breisse M; Canet-Soulas E
    Invest Radiol; 2012 Sep; 47(9):546-52. PubMed ID: 22864378
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental Study of Ultrafine Superparamagnetic Iron Oxide-Enhanced MRI in an Atherosclerotic Plaque Model.
    Chen X; Li X; Chen Q
    J Nanosci Nanotechnol; 2020 Dec; 20(12):7444-7450. PubMed ID: 32711613
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The possibility of visualizing TGF-β1 expression in ApoE
    Xia M; Wu F; Yang Y; Lu W; Song M; Ma Z
    Acta Radiol; 2024 Jan; 65(1):99-105. PubMed ID: 36760069
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Scavenger receptor-AI-targeted iron oxide nanoparticles for in vivo MRI detection of atherosclerotic lesions.
    Segers FM; den Adel B; Bot I; van der Graaf LM; van der Veer EP; Gonzalez W; Raynal I; de Winther M; Wodzig WK; Poelmann RE; van Berkel TJ; van der Weerd L; Biessen EA
    Arterioscler Thromb Vasc Biol; 2013 Aug; 33(8):1812-9. PubMed ID: 23744990
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Macrophage uptake switches on OCT contrast of superparamagnetic nanoparticles for imaging of atherosclerotic plaques.
    Ariza de Schellenberger A; Poller WC; Stangl V; Landmesser U; Schellenberger E
    Int J Nanomedicine; 2018; 13():7905-7913. PubMed ID: 30538467
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.