BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 36226384)

  • 1. Dephytinized flaxseed flours by phytase enzyme and fermentation: functional ingredients to enhance the nutritional quality of noodles.
    Yaver E
    J Sci Food Agric; 2023 Mar; 103(4):1946-1953. PubMed ID: 36226384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Usability of microfluidized flaxseed as a functional additive in bread.
    Saka İ; Baumgartner B; Özkaya B
    J Sci Food Agric; 2022 Jan; 102(2):505-513. PubMed ID: 34143439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Fermentation, Autoclaving and Phytase Treatment on the Antioxidant Properties and Quality of Teff Cookies.
    Karaçoban İ; Bilgiçli N; Yaver E
    Food Technol Biotechnol; 2023 Sep; 61(3):328-338. PubMed ID: 38022881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mineral and Phytic Acid Content as Well as Phytase Activity in Flours and Breads Made from Different Wheat Species.
    Longin CFH; Afzal M; Pfannstiel J; Bertsche U; Melzer T; Ruf A; Heger C; Pfaff T; Schollenberger M; Rodehutscord M
    Int J Mol Sci; 2023 Feb; 24(3):. PubMed ID: 36769092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nutritional and textural properties and antioxidant activity of breads prepared from immature, mature, germinated, fermented and black chickpea flours.
    Yaver E
    J Sci Food Agric; 2022 Dec; 102(15):7164-7171. PubMed ID: 35726896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of concentrated and dephytinized wheat bran and rice bran addition on bread properties.
    Özkaya B; Baumgartner B; Özkaya H
    J Texture Stud; 2018 Feb; 49(1):84-93. PubMed ID: 28742221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of different dephytinisation methods on chemical properties of commercial and traditional breads prepared from composite flour.
    Yaver E; Bilgiçli N
    Food Chem; 2019 Mar; 276():77-83. PubMed ID: 30409661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Impact of Sourdough Fermentation on Non-Nutritive Compounds and Antioxidant Activities of Flours from Different Phaseolus Vulgaris L. Genotypes.
    Gabriele M; Sparvoli F; Bollini R; Lubrano V; Longo V; Pucci L
    J Food Sci; 2019 Jul; 84(7):1929-1936. PubMed ID: 31218698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of characteristics of different wheat flours on the quality of fermented hollow noodles.
    Xiong X; Liu C; Song M; Zheng X
    Food Sci Nutr; 2021 Sep; 9(9):4927-4937. PubMed ID: 34532004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of protein enriched noodles using texturized defatted meal from sunflower, flaxseed and soybean.
    Bhise S; Kaur A; Aggarwal P
    J Food Sci Technol; 2015 Sep; 52(9):5882-9. PubMed ID: 26345004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship of dough thermomechanical properties with oil uptake, cooking and textural properties of instant fried noodles.
    Gulia N; Khatkar BS
    Food Sci Technol Int; 2014 Apr; 20(3):171-82. PubMed ID: 23744117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-efficiency removal of phytic acid in soy meal using two-stage temperature-induced Aspergillus oryzae solid-state fermentation.
    Chen L; Vadlani PV; Madl RL
    J Sci Food Agric; 2014 Jan; 94(1):113-8. PubMed ID: 23633040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Usage of primitive wheat (
    Cankurtaran Kömürcü T
    Food Sci Technol Int; 2023 Jul; 29(5):541-551. PubMed ID: 37128657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of germinated and heat-moisture treated ancient wheat on some quality attributes and bioactive components of noodles.
    Kömürcü TC; Bilgiçli N
    Food Chem; 2023 Mar; 404(Pt A):134577. PubMed ID: 36257263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of sourdough fermentation and mixture of wheat, chickpea, lentil and bean flours for enhancing the nutritional, texture and sensory characteristics of white bread.
    Rizzello CG; Calasso M; Campanella D; De Angelis M; Gobbetti M
    Int J Food Microbiol; 2014 Jun; 180():78-87. PubMed ID: 24794619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fermentation of pseudocereals quinoa, canihua, and amaranth to improve mineral accessibility through degradation of phytate.
    Castro-Alba V; Lazarte CE; Perez-Rea D; Carlsson NG; Almgren A; Bergenståhl B; Granfeldt Y
    J Sci Food Agric; 2019 Aug; 99(11):5239-5248. PubMed ID: 31062366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The importance of lactic acid bacteria for phytate degradation during cereal dough fermentation.
    Reale A; Konietzny U; Coppola R; Sorrentino E; Greiner R
    J Agric Food Chem; 2007 Apr; 55(8):2993-7. PubMed ID: 17373819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fermentation performance and nutritional assessment of physically processed lentil and green pea flour.
    Byanju B; Hojilla-Evangelista MP; Lamsal BP
    J Sci Food Agric; 2021 Nov; 101(14):5792-5806. PubMed ID: 33792043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spelt (Triticum aestivum ssp. spelta) as a source of breadmaking flours and bran naturally enriched in oleic acid and minerals but not phytic acid.
    Ruibal-Mendieta NL; Delacroix DL; Mignolet E; Pycke JM; Marques C; Rozenberg R; Petitjean G; Habib-Jiwan JL; Meurens M; Quetin-Leclercq J; Delzenne NM; Larondelle Y
    J Agric Food Chem; 2005 Apr; 53(7):2751-9. PubMed ID: 15796621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Phytase Production by Bacillus subtilis subsp. subtilis in Solid State Fermentation and its Utility in Improving Food Nutrition.
    Singh B; Kumar G; Kumar V; Singh D
    Protein Pept Lett; 2021; 28(10):1083-1089. PubMed ID: 34303326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.