These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36226413)

  • 1. Inflammaging and Bone Loss in a Rat Model of Spinal Cord Injury.
    Metzger CE; Rau J; Stefanov A; Joseph RM; Allaway HCM; Allen MR; Hook MA
    J Neurotrauma; 2023 May; 40(9-10):901-917. PubMed ID: 36226413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A moderate spinal contusion injury in rats alters bone turnover both below and above the level of injury with sex-based differences apparent in long-term recovery.
    Metzger CE; Moore RC; Pirkle AS; Tak LY; Rau J; Bryan JA; Stefanov A; Allen MR; Hook MA
    Bone Rep; 2024 Jun; 21():101761. PubMed ID: 38646090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteocytes reflect a pro-inflammatory state following spinal cord injury in a rodent model.
    Metzger CE; Gong S; Aceves M; Bloomfield SA; Hook MA
    Bone; 2019 Mar; 120():465-475. PubMed ID: 30550849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Longitudinal Examination of Bone Loss in Male Rats After Moderate-Severe Contusion Spinal Cord Injury.
    Otzel DM; Conover CF; Ye F; Phillips EG; Bassett T; Wnek RD; Flores M; Catter A; Ghosh P; Balaez A; Petusevsky J; Chen C; Gao Y; Zhang Y; Jiron JM; Bose PK; Borst SE; Wronski TJ; Aguirre JI; Yarrow JF
    Calcif Tissue Int; 2019 Jan; 104(1):79-91. PubMed ID: 30218117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of spinal cord injury and hindlimb immobilization on sublesional and supralesional bones in young growing rats.
    Liu D; Zhao CQ; Li H; Jiang SD; Jiang LS; Dai LY
    Bone; 2008 Jul; 43(1):119-125. PubMed ID: 18482879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Testosterone dose dependently prevents bone and muscle loss in rodents after spinal cord injury.
    Yarrow JF; Conover CF; Beggs LA; Beck DT; Otzel DM; Balaez A; Combs SM; Miller JR; Ye F; Aguirre JI; Neuville KG; Williams AA; Conrad BP; Gregory CM; Wronski TJ; Bose PK; Borst SE
    J Neurotrauma; 2014 May; 31(9):834-45. PubMed ID: 24378197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spinal cord injury causes rapid osteoclastic resorption and growth plate abnormalities in growing rats (SCI-induced bone loss in growing rats).
    Morse L; Teng YD; Pham L; Newton K; Yu D; Liao WL; Kohler T; Müller R; Graves D; Stashenko P; Battaglino R
    Osteoporos Int; 2008 May; 19(5):645-52. PubMed ID: 17987335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mice with sclerostin gene deletion are resistant to the severe sublesional bone loss induced by spinal cord injury.
    Qin W; Zhao W; Li X; Peng Y; Harlow LM; Li J; Qin Y; Pan J; Wu Y; Ran L; Ke HZ; Cardozo CP; Bauman WA
    Osteoporos Int; 2016 Dec; 27(12):3627-3636. PubMed ID: 27436301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patient-specific bone mineral density distribution in the tibia of individuals with chronic spinal cord injury, derived from multi-slice peripheral Quantitative Computed Tomography (pQCT) - A cross-sectional study.
    Coupaud S; Gislason MK; Purcell M; Sasagawa K; Tanner KE
    Bone; 2017 Apr; 97():29-37. PubMed ID: 28034635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic intermittent hypobaric hypoxia ameliorates osteoporosis after spinal cord injury through balancing osteoblast and osteoclast activities in rats.
    Zhang L; Yin Y; Guo J; Jin L; Hou Z
    Front Endocrinol (Lausanne); 2023; 14():1035186. PubMed ID: 37229453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteopenia in a Mouse Model of Spinal Cord Injury: Effects of Age, Sex and Motor Function.
    Hook MA; Falck A; Dundumulla R; Terminel M; Cunningham R; Sefiani A; Callaway K; Gaddy D; Geoffroy CG
    Biology (Basel); 2022 Jan; 11(2):. PubMed ID: 35205056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Administration of low dose estrogen attenuates persistent inflammation, promotes angiogenesis, and improves locomotor function following chronic spinal cord injury in rats.
    Samantaray S; Das A; Matzelle DC; Yu SP; Wei L; Varma A; Ray SK; Banik NL
    J Neurochem; 2016 May; 137(4):604-17. PubMed ID: 26998684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone loss after severe spinal cord injury coincides with reduced bone formation and precedes bone blood flow deficits.
    Yarrow JF; Wnek RD; Conover CF; Reynolds MC; Buckley KH; Kura JR; Sutor TW; Otzel DM; Mattingly AJ; Croft S; Aguirre JI; Borst SE; Beck DT; McCullough DJ
    J Appl Physiol (1985); 2021 Oct; 131(4):1288-1299. PubMed ID: 34473574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment with hydrogen sulfide attenuates sublesional skeletal deterioration following motor complete spinal cord injury in rats.
    Yang X; Hao D; Zhang H; Liu B; Yang M; He B
    Osteoporos Int; 2017 Feb; 28(2):687-695. PubMed ID: 27591786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential Adaptations of the Musculoskeletal System after Spinal Cord Contusion and Transection in Rats.
    Lin CY; Androjna C; Rozic R; Nguyen B; Parsons B; Midura RJ; Lee YS
    J Neurotrauma; 2018 Aug; 35(15):1737-1744. PubMed ID: 29402167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Daily parathyroid hormone administration enhances bone turnover and preserves bone structure after severe immobilization-induced bone loss.
    Harlow L; Sahbani K; Nyman JS; Cardozo CP; Bauman WA; Tawfeek HA
    Physiol Rep; 2017 Sep; 5(18):. PubMed ID: 28963125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment with curcumin alleviates sublesional bone loss following spinal cord injury in rats.
    Yang X; He B; Liu P; Yan L; Yang M; Li D
    Eur J Pharmacol; 2015 Oct; 765():209-16. PubMed ID: 26300394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abaloparatide prevents immobilization-induced cortical but not trabecular bone loss after spinal cord injury.
    Sahbani K; Pan J; Zaidi M; Cardozo CP; Bauman WA; Tawfeek HA
    FASEB J; 2023 Jun; 37(6):e22984. PubMed ID: 37219516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of low intensity vibration on bone and muscle in rats with spinal cord injury.
    Bramlett HM; Dietrich WD; Marcillo A; Mawhinney LJ; Furones-Alonso O; Bregy A; Peng Y; Wu Y; Pan J; Wang J; Guo XE; Bauman WA; Cardozo C; Qin W
    Osteoporos Int; 2014 Sep; 25(9):2209-19. PubMed ID: 24861907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Passive Cycle Training Promotes Bone Recovery after Spinal Cord Injury without Altering Resting-State Bone Perfusion.
    Yarrow JF; Wnek RD; Conover CF; Reynolds MC; Buckley KH; Kura JR; Sutor TW; Otzel DM; Mattingly AJ; Borst SE; Croft SM; Aguirre JI; Beck DT; McCullough DJ
    Med Sci Sports Exerc; 2023 May; 55(5):813-823. PubMed ID: 36728986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.