BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 36226550)

  • 1. Molecular speciation controls arsenic and lead bioaccessibility in fugitive dusts from sulfidic mine tailings.
    Root RA; Chorover J
    Environ Sci Process Impacts; 2023 Feb; 25(2):288-303. PubMed ID: 36226550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxic metal(loid) speciation during weathering of iron sulfide mine tailings under semi-arid climate.
    Root RA; Hayes SM; Hammond CM; Maier RM; Chorover J
    Appl Geochem; 2015 Nov; 62():131-149. PubMed ID: 26549929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative weathering decreases bioaccessibility of toxic metal(loid)s in PM
    Thomas AN; Root RA; Lantz RC; Sáez AE; Chorover J
    Geohealth; 2018 Apr; 2(4):118-138. PubMed ID: 30338309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioaccessibility, release kinetics, and molecular speciation of arsenic and lead in geo-dusts from the Iron King Mine Federal Superfund site in Humboldt, Arizona.
    Menka N; Root R; Chorover J
    Rev Environ Health; 2014; 29(1-2):23-7. PubMed ID: 24552959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenic and iron speciation and mobilization during phytostabilization of pyritic mine tailings.
    Hammond CM; Root RA; Maier RM; Chorover J
    Geochim Cosmochim Acta; 2020 Oct; 286():306-323. PubMed ID: 33071297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of biogeochemical redox oscillations on arsenic release from legacy mine tailings.
    Liu Y; Root RA; Abramson N; Fan L; Sun J; Liu C; Chorover J
    Geochim Cosmochim Acta; 2023 Nov; 360():192-206. PubMed ID: 37928745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geochemical weathering increases lead bioaccessibility in semi-arid mine tailings.
    Hayes SM; Webb SM; Bargar JR; O'Day PA; Maier RM; Chorover J
    Environ Sci Technol; 2012 Jun; 46(11):5834-41. PubMed ID: 22553941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal(loid) bioaccessibility of atmospheric particulate matter from mine tailings at Zimapan, Mexico.
    Corona Sánchez JE; González Chávez MDCA; Carrillo González R; Scheckel K; Tapia Maruri D; García Cue JL
    Environ Sci Pollut Res Int; 2021 Apr; 28(15):19458-19472. PubMed ID: 33394436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioaccessibility of As, Cu, Pb, and Zn in mine waste, urban soil, and road dust in the historical mining village of Kaňk, Czech Republic.
    Drahota P; Raus K; Rychlíková E; Rohovec J
    Environ Geochem Health; 2018 Aug; 40(4):1495-1512. PubMed ID: 28620816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surficial weathering of iron sulfide mine tailings under semi-arid climate.
    Hayes SM; Root RA; Perdrial N; Maier R; Chorover J
    Geochim Cosmochim Acta; 2014 Sep; 141():240-257. PubMed ID: 25197102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oral bioaccessibility of metal(loid)s in dust materials from mining areas of northern Namibia.
    Ettler V; Cihlová M; Jarošíková A; Mihaljevič M; Drahota P; Kříbek B; Vaněk A; Penížek V; Sracek O; Klementová M; Engel Z; Kamona F; Mapani B
    Environ Int; 2019 Mar; 124():205-215. PubMed ID: 30654327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioaccessibility of potentially toxic metals in soil, sediments and tailings from a north Africa phosphate-mining area: Insight into human health risk assessment.
    Khelifi F; Caporale AG; Hamed Y; Adamo P
    J Environ Manage; 2021 Feb; 279():111634. PubMed ID: 33213991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contaminant Binding and Bioaccessibility in the Dust From the Ni-Cu Mining/Smelting District of Selebi-Phikwe (Botswana).
    Ettler V; Hladíková K; Mihaljevič M; Drahota P; Culka A; Jedlicka R; Kříbek B; Vaněk A; Penížek V; Sracek O; Bagai Z
    Geohealth; 2022 Nov; 6(11):e2022GH000683. PubMed ID: 36348990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. (Micro)spectroscopic analyses of particle size dependence on arsenic distribution and speciation in mine wastes.
    Kim CS; Chi C; Miller SR; Rosales RA; Sugihara ES; Akau J; Rytuba JJ; Webb SM
    Environ Sci Technol; 2013 Aug; 47(15):8164-71. PubMed ID: 23889478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioaccessibility of arsenic(V) bound to ferrihydrite using a simulated gastrointestinal system.
    Beak DG; Basta NT; Scheckel KG; Traina SJ
    Environ Sci Technol; 2006 Feb; 40(4):1364-70. PubMed ID: 16572798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro assessment of arsenic mobility in historical mine waste dust using simulated lung fluid.
    Martin R; Dowling K; Nankervis S; Pearce D; Florentine S; McKnight S
    Environ Geochem Health; 2018 Jun; 40(3):1037-1049. PubMed ID: 28497229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of arsenic species in tailings and windblown dust from a gold mining area.
    Ono FB; Tappero R; Sparks D; Guilherme LR
    Environ Sci Pollut Res Int; 2016 Jan; 23(1):638-47. PubMed ID: 26330325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An inhalation-ingestion bioaccessibility assay (IIBA) for the assessment of exposure to metal(loid)s in PM
    Kastury F; Smith E; Karna RR; Scheckel KG; Juhasz AL
    Sci Total Environ; 2018 Aug; 631-632():92-104. PubMed ID: 29524906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic species in weathering mine tailings and biogenic solids at the Lava Cap Mine Superfund Site, Nevada City, CA.
    Foster AL; Ashley RP; Rytuba JJ
    Geochem Trans; 2011 Jan; 12(1):1. PubMed ID: 21261983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of Arsenic Sequestration by Prosopis juliflora during the Phytostabilization of Metalliferous Mine Tailings.
    Hammond CM; Root RA; Maier RM; Chorover J
    Environ Sci Technol; 2018 Feb; 52(3):1156-1164. PubMed ID: 29241010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.