These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 36226866)
1. Adenosine triphosphate (ATP) bioluminescence-based strategies for monitoring atmospheric bioaerosols. Zhang Y; Liu B; Tong Z J Air Waste Manag Assoc; 2022 Dec; 72(12):1327-1340. PubMed ID: 36226866 [TBL] [Abstract][Full Text] [Related]
2. Online monitoring system for qualitative and quantitative analysis of bioaerosols by combined ATP bioluminescence assay with loop-mediated isothermal amplification. Chen Z; Liang Z; Li G; Das R; Chen P; An T Sci Total Environ; 2024 Aug; 937():173404. PubMed ID: 38797419 [TBL] [Abstract][Full Text] [Related]
3. Air sampling and ATP bioluminescence for quantitative detection of airborne microbes. Liu Q; Yan S; Zhang M; Wang C; Xing D Talanta; 2024 Jul; 274():126025. PubMed ID: 38574539 [TBL] [Abstract][Full Text] [Related]
4. Size-classified monitoring of ATP bioluminescence for rapid assessment of biological distribution in airborne particulates. Oh J; Choi J; Massoudifarid M; Park JY; Hwang J; Lim J; Byeon JH Biosens Bioelectron; 2023 Aug; 234():115356. PubMed ID: 37172362 [TBL] [Abstract][Full Text] [Related]
5. Development of a size-selective sampler combined with an adenosine triphosphate bioluminescence assay for the rapid measurement of bioaerosols. Liao L; Byeon JH; Park JH Environ Res; 2021 Mar; 194():110615. PubMed ID: 33309960 [TBL] [Abstract][Full Text] [Related]
6. A novel strategy for bioaerosol rapid detection based on broad-spectrum high-efficiency magnetic enrichment and separation combined with ATP bioluminescence. Du B; Zhang Y; Wang J; Liu Z; Mu X; Xu J; Tong Z; Liu B Biosens Bioelectron; 2023 Nov; 240():115627. PubMed ID: 37647683 [TBL] [Abstract][Full Text] [Related]
7. In situ lysis droplet supply to efficiently extract ATP from dust particles for near-real-time bioaerosol monitoring. Kim HR; An S; Hwang J; Park JH; Byeon JH J Hazard Mater; 2019 May; 369():684-690. PubMed ID: 30826561 [TBL] [Abstract][Full Text] [Related]
8. Continuous Surveillance of Bioaerosols On-Site Using an Automated Bioaerosol-Monitoring System. Cho YS; Kim HR; Ko HS; Jeong SB; Chan Kim B; Jung JH ACS Sens; 2020 Feb; 5(2):395-403. PubMed ID: 31913022 [TBL] [Abstract][Full Text] [Related]
9. Real-time monitoring of bioaerosols via cell-lysis by air ion and ATP bioluminescence detection. Park CW; Park JW; Lee SH; Hwang J Biosens Bioelectron; 2014 Feb; 52():379-83. PubMed ID: 24080217 [TBL] [Abstract][Full Text] [Related]
10. Fast monitoring of indoor bioaerosol concentrations with ATP bioluminescence assay using an electrostatic rod-type sampler. Park JW; Park CW; Lee SH; Hwang J PLoS One; 2015; 10(5):e0125251. PubMed ID: 25950929 [TBL] [Abstract][Full Text] [Related]
11. Molecular approaches for the detection and monitoring of microbial communities in bioaerosols: A review. Yoo K; Lee TK; Choi EJ; Yang J; Shukla SK; Hwang SI; Park J J Environ Sci (China); 2017 Jan; 51():234-247. PubMed ID: 28115135 [TBL] [Abstract][Full Text] [Related]
12. Continuous and real-time bioaerosol monitoring by combined aerosol-to-hydrosol sampling and ATP bioluminescence assay. Park JW; Kim HR; Hwang J Anal Chim Acta; 2016 Oct; 941():101-107. PubMed ID: 27692374 [TBL] [Abstract][Full Text] [Related]
13. Comprehensive insights into advances in ambient bioaerosols sampling, analysis and factors influencing bioaerosols composition. Sajjad B; Hussain S; Rasool K; Hassan M; Almomani F Environ Pollut; 2023 Nov; 336():122473. PubMed ID: 37659632 [TBL] [Abstract][Full Text] [Related]
14. A short review of bioaerosol emissions from gas bioreactors: Health threats, influencing factors and control technologies. Hu XR; Han MF; Wang C; Yang NY; Wang YC; Duan EH; Hsi HC; Deng JG Chemosphere; 2020 Aug; 253():126737. PubMed ID: 32302908 [TBL] [Abstract][Full Text] [Related]
15. Bioaerosols in the atmosphere: A comprehensive review on detection methods, concentration and influencing factors. Huang Z; Yu X; Liu Q; Maki T; Alam K; Wang Y; Xue F; Tang S; Du P; Dong Q; Wang D; Huang J Sci Total Environ; 2024 Feb; 912():168818. PubMed ID: 38036132 [TBL] [Abstract][Full Text] [Related]
16. Design and application of an inertial impactor in combination with an ATP bioluminescence detector for in situ rapid estimation of the efficacies of air controlling devices on removal of bioaerosols. Yoon KY; Park CW; Byeon JH; Hwang J Environ Sci Technol; 2010 Mar; 44(5):1742-6. PubMed ID: 20143821 [TBL] [Abstract][Full Text] [Related]
17. Collection efficiencies of an electrostatic sampler with superhydrophobic surface for fungal bioaerosols. Han T; Nazarenko Y; Lioy PJ; Mainelis G Indoor Air; 2011 Apr; 21(2):110-20. PubMed ID: 21204982 [TBL] [Abstract][Full Text] [Related]
18. Comparison of molecular and total ATP-based analytical methods with culture for the analysis of bioaerosols. Kim SY; Kim ZY; Lee S; Ko G Sci Total Environ; 2011 Apr; 409(9):1732-7. PubMed ID: 21329966 [TBL] [Abstract][Full Text] [Related]
19. Versatile filter membrane for effective sampling and real-time quantitative detection of airborne pathogens. Yan S; Liu Q; Xing K; Liu Z; Guo H; Jiang W; Ma X; Yan M; Wang C; Liu X; Xing D J Hazard Mater; 2024 Aug; 474():134740. PubMed ID: 38805821 [TBL] [Abstract][Full Text] [Related]
20. Enriched Aerosol-to-Hydrosol Transfer for Rapid and Continuous Monitoring of Bioaerosols. Heo KJ; Ko HS; Jeong SB; Kim SB; Jung JH Nano Lett; 2021 Jan; 21(2):1017-1024. PubMed ID: 33444028 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]