These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 3622687)

  • 1. Trajectory control in targeted force impulses. II. Pulse height control.
    Gordon J; Ghez C
    Exp Brain Res; 1987; 67(2):241-52. PubMed ID: 3622687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trajectory control in targeted force impulses. III. Compensatory adjustments for initial errors.
    Gordon J; Ghez C
    Exp Brain Res; 1987; 67(2):253-69. PubMed ID: 3622688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trajectory control in targeted force impulses. V. Gradual specification of response amplitude.
    Hening W; Favilla M; Ghez C
    Exp Brain Res; 1988; 71(1):116-28. PubMed ID: 3416946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trajectory control in targeted force impulses. VI. Independent specification of response amplitude and direction.
    Favilla M; Hening W; Ghez C
    Exp Brain Res; 1989; 75(2):280-94. PubMed ID: 2721609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trajectory control in targeted force impulses. I. Role of opposing muscles.
    Ghez C; Gordon J
    Exp Brain Res; 1987; 67(2):225-40. PubMed ID: 3622686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trajectory control in targeted force impulses. IV. Influences of choice, prior experience and urgency.
    Hening W; Vicario D; Ghez C
    Exp Brain Res; 1988; 71(1):103-15. PubMed ID: 3416945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EMG patterns in antagonist muscles during isometric contraction in man: relations to response dynamics.
    Gordon J; Ghez C
    Exp Brain Res; 1984; 55(1):167-71. PubMed ID: 6745347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accuracy of motor responses in subjects with and without control of antagonist muscle.
    Wierzbicka MM; Wiegner AW
    J Neurophysiol; 1996 Jun; 75(6):2533-41. PubMed ID: 8793762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The control of rapid limb movement in the cat. II. Scaling of isometric force adjustments.
    Ghez C; Vicario D
    Exp Brain Res; 1978 Oct; 33(2):191-202. PubMed ID: 700005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The control of rapid limb movement in the cat. IV. Updating of ongoing isometric responses.
    Vicario DS; Ghez C
    Exp Brain Res; 1984; 55(1):134-44. PubMed ID: 6540198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of combined variation of force amplitude and rate of force development on the modulation characteristics of muscle activation during rapid isometric aiming force production.
    Park JH; Stelmach GE
    Exp Brain Res; 2006 Jan; 168(3):337-47. PubMed ID: 16328255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force development during target-directed isometric force production in Parkinson's disease.
    Park JH; Stelmach GE
    Neurosci Lett; 2007 Jan; 412(2):173-8. PubMed ID: 17123726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted isometric force impulses in patients with traumatic brain injury reveal delayed motor programming and change of strategy.
    Cantagallo A; Di Russo F; Favilla M; Zoccolotti P
    J Neurotrauma; 2015 Apr; 32(8):563-70. PubMed ID: 25273979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trajectory control in targeted force impulses. VII. Independent setting of amplitude and direction in response preparation.
    Favilla M; Gordon J; Hening W; Ghez C
    Exp Brain Res; 1990; 79(3):530-8. PubMed ID: 2340872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discrete and continuous planning of hand movements and isometric force trajectories.
    Ghez C; Favilla M; Ghilardi MF; Gordon J; Bermejo R; Pullman S
    Exp Brain Res; 1997 Jun; 115(2):217-33. PubMed ID: 9224851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limits of the dual-strategy hypothesis in an isometric plantar flexion contraction.
    Monohar VJ; Brunt D; Robichaud JA
    Exp Brain Res; 1998 Oct; 122(4):459-66. PubMed ID: 9827865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in finger coordination and responses to single pulse TMS of motor cortex during practice of a multifinger force production task.
    Latash ML; Yarrow K; Rothwell JC
    Exp Brain Res; 2003 Jul; 151(1):60-71. PubMed ID: 12740728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel strategies in feedforward adaptation to a position-dependent perturbation.
    Hinder MR; Milner TE
    Exp Brain Res; 2005 Aug; 165(2):239-49. PubMed ID: 15856204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulse control during rapid isometric contractions of the elbow joint.
    Yamazaki Y; Suzuki M; Mano T
    Brain Res Bull; 1994; 34(6):519-31. PubMed ID: 7922594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of pulse height control for rapid isometric contractions in college sprinters.
    Ono S; Itaya A; Hayami T; Ohyama-Byun K; Kizuka T
    Neuroreport; 2017 Aug; 28(12):766-769. PubMed ID: 28640007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.