These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 3622688)

  • 1. Trajectory control in targeted force impulses. III. Compensatory adjustments for initial errors.
    Gordon J; Ghez C
    Exp Brain Res; 1987; 67(2):253-69. PubMed ID: 3622688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trajectory control in targeted force impulses. II. Pulse height control.
    Gordon J; Ghez C
    Exp Brain Res; 1987; 67(2):241-52. PubMed ID: 3622687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The control of rapid limb movement in the cat. II. Scaling of isometric force adjustments.
    Ghez C; Vicario D
    Exp Brain Res; 1978 Oct; 33(2):191-202. PubMed ID: 700005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trajectory control in targeted force impulses. I. Role of opposing muscles.
    Ghez C; Gordon J
    Exp Brain Res; 1987; 67(2):225-40. PubMed ID: 3622686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EMG patterns in antagonist muscles during isometric contraction in man: relations to response dynamics.
    Gordon J; Ghez C
    Exp Brain Res; 1984; 55(1):167-71. PubMed ID: 6745347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trajectory control in targeted force impulses. V. Gradual specification of response amplitude.
    Hening W; Favilla M; Ghez C
    Exp Brain Res; 1988; 71(1):116-28. PubMed ID: 3416946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different neural adjustments improve endpoint accuracy with practice in young and old adults.
    Christou EA; Poston B; Enoka JA; Enoka RM
    J Neurophysiol; 2007 May; 97(5):3340-50. PubMed ID: 17376846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deficits in compensatory trajectory adjustments after unilateral sensorimotor stroke.
    Fisher BE; Winstein CJ; Velicki MR
    Exp Brain Res; 2000 Jun; 132(3):328-44. PubMed ID: 10883381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Timing variability and not force variability predicts the endpoint accuracy of fast and slow isometric contractions.
    Poston B; Christou EA; Enoka JA; Enoka RM
    Exp Brain Res; 2010 Apr; 202(1):189-202. PubMed ID: 20033680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The control of rapid limb movement in the cat. IV. Updating of ongoing isometric responses.
    Vicario DS; Ghez C
    Exp Brain Res; 1984; 55(1):134-44. PubMed ID: 6540198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trajectory control in targeted force impulses. IV. Influences of choice, prior experience and urgency.
    Hening W; Vicario D; Ghez C
    Exp Brain Res; 1988; 71(1):103-15. PubMed ID: 3416945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy of motor responses in subjects with and without control of antagonist muscle.
    Wierzbicka MM; Wiegner AW
    J Neurophysiol; 1996 Jun; 75(6):2533-41. PubMed ID: 8793762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trajectory control in targeted force impulses. VI. Independent specification of response amplitude and direction.
    Favilla M; Hening W; Ghez C
    Exp Brain Res; 1989; 75(2):280-94. PubMed ID: 2721609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endpoint accuracy for a small and a large hand muscle in young and old adults during rapid, goal-directed isometric contractions.
    Poston B; Enoka JA; Enoka RM
    Exp Brain Res; 2008 May; 187(3):373-85. PubMed ID: 18288474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trained slow tracking. I. Muscular production of wrist movement.
    Schieber MH; Thach WT
    J Neurophysiol; 1985 Nov; 54(5):1213-27. PubMed ID: 4078615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between force and electromyographic activity during rapid isometric contraction in power grip.
    Suzuki M; Yamazaki Y; Matsunami K
    Electroencephalogr Clin Neurophysiol; 1994 Jun; 93(3):218-24. PubMed ID: 7515798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-associated impairement in endpoint accuracy of goal-directed contractions performed with two fingers is due to altered activation of the synergistic muscles.
    Chen YT; Pinto Neto O; de Miranda Marzullo AC; Kennedy DM; Fox EJ; Christou EA
    Exp Gerontol; 2012 Jul; 47(7):519-26. PubMed ID: 22580059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinematic markers dissociate error correction from sensorimotor realignment during prism adaptation.
    O'Shea J; Gaveau V; Kandel M; Koga K; Susami K; Prablanc C; Rossetti Y
    Neuropsychologia; 2014 Mar; 55():15-24. PubMed ID: 24056297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of variability of initial kinematics and endpoints of reaching movements.
    Messier J; Kalaska JF
    Exp Brain Res; 1999 Mar; 125(2):139-52. PubMed ID: 10204767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of combined variation of force amplitude and rate of force development on the modulation characteristics of muscle activation during rapid isometric aiming force production.
    Park JH; Stelmach GE
    Exp Brain Res; 2006 Jan; 168(3):337-47. PubMed ID: 16328255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.