These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36227031)

  • 81. CRISPR Genome Editing Made Easy Through the CHOPCHOP Website.
    Labun K; Krause M; Torres Cleuren Y; Valen E
    Curr Protoc; 2021 Apr; 1(4):e46. PubMed ID: 33905612
    [TBL] [Abstract][Full Text] [Related]  

  • 82. KOnezumi: a web application for automating gene disruption strategies to generate knockout mice.
    Kuno A; Mizuno S; Takahashi S
    Bioinformatics; 2019 Sep; 35(18):3479-3481. PubMed ID: 30726877
    [TBL] [Abstract][Full Text] [Related]  

  • 83. CRISPR Guide RNA Design Guidelines for Efficient Genome Editing.
    Schindele P; Wolter F; Puchta H
    Methods Mol Biol; 2020; 2166():331-342. PubMed ID: 32710418
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Natural Nucleoside Modifications in Guide RNAs Can Modulate the Activity of the CRISPR-Cas9 System
    Prokhorova DV; Vokhtantsev IP; Tolstova PO; Zhuravlev ES; Kulishova LM; Zharkov DO; Stepanov GA
    CRISPR J; 2022 Dec; 5(6):799-812. PubMed ID: 36350691
    [TBL] [Abstract][Full Text] [Related]  

  • 85. iCRISEE: an integrative analysis of CRISPR screen by reducing false positive hits.
    Zhang T; Li Y; Yang Y; Weng L; Wu Z; Zhu J; Qin J; Liu Q; Wang P
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34905767
    [TBL] [Abstract][Full Text] [Related]  

  • 86. A Simplified Method for CRISPR-Cas9 Engineering of Bacillus subtilis.
    Sachla AJ; Alfonso AJ; Helmann JD
    Microbiol Spectr; 2021 Oct; 9(2):e0075421. PubMed ID: 34523974
    [TBL] [Abstract][Full Text] [Related]  

  • 87. CROP: a CRISPR/Cas9 guide selection program based on mapping guide variants.
    Aprilyanto V; Aditama R; Tanjung ZA; Utomo C; Liwang T
    Sci Rep; 2021 Jan; 11(1):1504. PubMed ID: 33452424
    [TBL] [Abstract][Full Text] [Related]  

  • 88. CROTON: an automated and variant-aware deep learning framework for predicting CRISPR/Cas9 editing outcomes.
    Li VR; Zhang Z; Troyanskaya OG
    Bioinformatics; 2021 Jul; 37(Suppl_1):i342-i348. PubMed ID: 34252931
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Genome Editing with CRISPR-Cas9: Can It Get Any Better?
    Haeussler M; Concordet JP
    J Genet Genomics; 2016 May; 43(5):239-50. PubMed ID: 27210042
    [TBL] [Abstract][Full Text] [Related]  

  • 90. CRISPR-Cas "Non-Target" Sites Inhibit On-Target Cutting Rates.
    Moreb EA; Hutmacher M; Lynch MD
    CRISPR J; 2020 Dec; 3(6):550-561. PubMed ID: 33346713
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Prediction of CRISPR sgRNA Activity Using a Deep Convolutional Neural Network.
    Xue L; Tang B; Chen W; Luo J
    J Chem Inf Model; 2019 Jan; 59(1):615-624. PubMed ID: 30485088
    [TBL] [Abstract][Full Text] [Related]  

  • 92. CRISPR/Cas9-mediated efficient genome editing via protoplast-based transformation in yeast-like fungus Aureobasidium pullulans.
    Zhang Y; Feng J; Wang P; Xia J; Li X; Zou X
    Gene; 2019 Aug; 709():8-16. PubMed ID: 31132514
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Whole genome analysis of CRISPR Cas9 sgRNA off-target homologies via an efficient computational algorithm.
    Zhou H; Zhou M; Li D; Manthey J; Lioutikova E; Wang H; Zeng X
    BMC Genomics; 2017 Nov; 18(Suppl 9):826. PubMed ID: 29219081
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Genome aware CRISPR gRNA target prediction for parasitic nematodes.
    O'Halloran DM
    Mol Biochem Parasitol; 2019 Jan; 227():25-28. PubMed ID: 30529475
    [TBL] [Abstract][Full Text] [Related]  

  • 95. [sgRNA design for the CRISPR/Cas9 system and evaluation of its off-target effects].
    Xie SS; Zhang Y; Zhang LS; Li GL; Zhao CZ; Ni P; Zhao SH
    Yi Chuan; 2015 Nov; 37(11):1125-36. PubMed ID: 26582526
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Prediction of off-target specificity and cell-specific fitness of CRISPR-Cas System using attention boosted deep learning and network-based gene feature.
    Liu Q; He D; Xie L
    PLoS Comput Biol; 2019 Oct; 15(10):e1007480. PubMed ID: 31658261
    [TBL] [Abstract][Full Text] [Related]  

  • 97. CRISPR/Cas9-mediated genome editing in sea urchins.
    Lin CY; Oulhen N; Wessel G; Su YH
    Methods Cell Biol; 2019; 151():305-321. PubMed ID: 30948015
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Genome Editing by CRISPR/Cas9 in Sorghum Through Biolistic Bombardment.
    Liu G; Li J; Godwin ID
    Methods Mol Biol; 2019; 1931():169-183. PubMed ID: 30652290
    [TBL] [Abstract][Full Text] [Related]  

  • 99. The yeast platform engineered for synthetic gRNA-landing pads enables multiple gene integrations by a single gRNA/Cas9 system.
    Baek S; Utomo JC; Lee JY; Dalal K; Yoon YJ; Ro DK
    Metab Eng; 2021 Mar; 64():111-121. PubMed ID: 33549837
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Simplified CRISPR-Mediated DNA Editing in Multicellular Eukaryotes.
    Kumar R; Tiwari K; Saudagar P
    Methods Mol Biol; 2023; 2575():241-260. PubMed ID: 36301478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.