These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36227560)

  • 1. Characterizing Fluorescence Properties of Turn-on RNA Aptamers.
    Trachman RJ; Link KA; Knutson JR; Ferré-D'Amaré AR
    Methods Mol Biol; 2023; 2568():25-36. PubMed ID: 36227560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-Guided Engineering of the Homodimeric Mango-IV Fluorescence Turn-on Aptamer Yields an RNA FRET Pair.
    Trachman RJ; Cojocaru R; Wu D; Piszczek G; Ryckelynck M; Unrau PJ; Ferré-D'Amaré AR
    Structure; 2020 Jul; 28(7):776-785.e3. PubMed ID: 32386573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid Selection of RNA Aptamers that Activate Fluorescence of Small Molecules.
    Filonov GS
    Methods Mol Biol; 2017; 1575():273-289. PubMed ID: 28255887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorogenic RNA Mango aptamers for imaging small non-coding RNAs in mammalian cells.
    Autour A; C Y Jeng S; D Cawte A; Abdolahzadeh A; Galli A; Panchapakesan SSS; Rueda D; Ryckelynck M; Unrau PJ
    Nat Commun; 2018 Feb; 9(1):656. PubMed ID: 29440634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracking RNA with light: selection, structure, and design of fluorescence turn-on RNA aptamers.
    Trachman RJ; Ferré-D'Amaré AR
    Q Rev Biophys; 2019 Aug; 52():e8. PubMed ID: 31423956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-crystal structure of the iMango-III fluorescent RNA aptamer using an X-ray free-electron laser.
    Trachman RJ; Stagno JR; Conrad C; Jones CP; Fischer P; Meents A; Wang YX; Ferré-D'Amaré AR
    Acta Crystallogr F Struct Biol Commun; 2019 Aug; 75(Pt 8):547-551. PubMed ID: 31397326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA mango aptamer-fluorophore: a bright, high-affinity complex for RNA labeling and tracking.
    Dolgosheina EV; Jeng SC; Panchapakesan SS; Cojocaru R; Chen PS; Wilson PD; Hawkins N; Wiggins PA; Unrau PJ
    ACS Chem Biol; 2014 Oct; 9(10):2412-20. PubMed ID: 25101481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hidden intermediates in Mango III RNA aptamer folding revealed by pressure perturbation.
    Harish B; Wang J; Hayden EJ; Grabe B; Hiller W; Winter R; Royer CA
    Biophys J; 2022 Feb; 121(3):421-429. PubMed ID: 34971617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and functional reselection of the Mango-III fluorogenic RNA aptamer.
    Trachman RJ; Autour A; Jeng SCY; Abdolahzadeh A; Andreoni A; Cojocaru R; Garipov R; Dolgosheina EV; Knutson JR; Ryckelynck M; Unrau PJ; Ferré-D'Amaré AR
    Nat Chem Biol; 2019 May; 15(5):472-479. PubMed ID: 30992561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Principles of Fluorescent RNA Aptamers.
    Trachman RJ; Truong L; Ferré-D'Amaré AR
    Trends Pharmacol Sci; 2017 Oct; 38(10):928-939. PubMed ID: 28728963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution.
    Filonov GS; Moon JD; Svensen N; Jaffrey SR
    J Am Chem Soc; 2014 Nov; 136(46):16299-308. PubMed ID: 25337688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral Tuning by a Single Nucleotide Controls the Fluorescence Properties of a Fluorogenic Aptamer.
    Filonov GS; Song W; Jaffrey SR
    Biochemistry; 2019 Mar; 58(12):1560-1564. PubMed ID: 30838859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and Mechanism of RNA Mimics of Green Fluorescent Protein.
    You M; Jaffrey SR
    Annu Rev Biophys; 2015; 44():187-206. PubMed ID: 26098513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large Stokes shift fluorescent RNAs for dual-emission fluorescence and bioluminescence imaging in live cells.
    Jiang L; Xie X; Su N; Zhang D; Chen X; Xu X; Zhang B; Huang K; Yu J; Fang M; Bao B; Zuo F; Yang L; Zhang R; Li H; Huang X; Chen Z; Zeng Q; Liu R; Lin Q; Zhao Y; Ren A; Zhu L; Yang Y
    Nat Methods; 2023 Oct; 20(10):1563-1572. PubMed ID: 37723244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Mirror Image Fluorogenic Aptamer Sensor for Live-Cell Imaging of MicroRNAs.
    Zhong W; Sczepanski JT
    ACS Sens; 2019 Mar; 4(3):566-570. PubMed ID: 30843691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double-stemmed and split structural variants of fluorescent RNA Mango aptamers.
    Herrera-Gutierrez J; Burden SJ; Kobernat SE; Shults NH; Smith M; Fologea D; Hayden EJ
    RNA; 2023 Sep; 29(9):1355-1364. PubMed ID: 37268327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-colour imaging of RNAs using quencher- and fluorophore-binding aptamers.
    Arora A; Sunbul M; Jäschke A
    Nucleic Acids Res; 2015 Dec; 43(21):e144. PubMed ID: 26175046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualizing RNA in Live Bacterial Cells Using Fluorophore- and Quencher-Binding Aptamers.
    Sunbul M; Arora A; Jäschke A
    Methods Mol Biol; 2018; 1649():289-304. PubMed ID: 29130205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SiRA: A Silicon Rhodamine-Binding Aptamer for Live-Cell Super-Resolution RNA Imaging.
    Wirth R; Gao P; Nienhaus GU; Sunbul M; Jäschke A
    J Am Chem Soc; 2019 May; 141(18):7562-7571. PubMed ID: 30986047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inert Pepper aptamer-mediated endogenous mRNA recognition and imaging in living cells.
    Wang Q; Xiao F; Su H; Liu H; Xu J; Tang H; Qin S; Fang Z; Lu Z; Wu J; Weng X; Zhou X
    Nucleic Acids Res; 2022 Aug; 50(14):e84. PubMed ID: 35580055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.