These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 36227564)

  • 1. Exploring the Binding Process of Cognate Ligand to Add Adenine Riboswitch Aptamer by Using Explicit Solvent Molecular Dynamics (MD) Simulation.
    Bao L; Xiao Y
    Methods Mol Biol; 2023; 2568():103-122. PubMed ID: 36227564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulation of the binding process of ligands to the add adenine riboswitch aptamer.
    Bao L; Wang J; Xiao Y
    Phys Rev E; 2019 Aug; 100(2-1):022412. PubMed ID: 31574664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MD simulations of ligand-bound and ligand-free aptamer: molecular level insights into the binding and switching mechanism of the add A-riboswitch.
    Sharma M; Bulusu G; Mitra A
    RNA; 2009 Sep; 15(9):1673-92. PubMed ID: 19625387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand-induced stabilization of the aptamer terminal helix in the add adenine riboswitch.
    Di Palma F; Colizzi F; Bussi G
    RNA; 2013 Nov; 19(11):1517-24. PubMed ID: 24051105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligand Binding Mechanism and Its Relationship with Conformational Changes in Adenine Riboswitch.
    Hu G; Li H; Xu S; Wang J
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32168940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using reweighted pulling simulations to characterize conformational changes in riboswitches.
    Di Palma F; Colizzi F; Bussi G
    Methods Enzymol; 2015; 553():139-62. PubMed ID: 25726464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loop-loop interaction in an adenine-sensing riboswitch: a molecular dynamics study.
    Allnér O; Nilsson L; Villa A
    RNA; 2013 Jul; 19(7):916-26. PubMed ID: 23716711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand Selectivity Mechanism and Conformational Changes in Guanine Riboswitch by Molecular Dynamics Simulations and Free Energy Calculations.
    Hu G; Ma A; Wang J
    J Chem Inf Model; 2017 Apr; 57(4):918-928. PubMed ID: 28345904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of ligand binding in structural organization of add A-riboswitch aptamer: a molecular dynamics simulation.
    Gong Z; Zhao Y; Chen C; Xiao Y
    J Biomol Struct Dyn; 2011 Oct; 29(2):403-16. PubMed ID: 21875158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulation study of the binding of purine bases to the aptamer domain of the guanine sensing riboswitch.
    Villa A; Wöhnert J; Stock G
    Nucleic Acids Res; 2009 Aug; 37(14):4774-86. PubMed ID: 19515936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence-dependent folding landscapes of adenine riboswitch aptamers.
    Lin JC; Hyeon C; Thirumalai D
    Phys Chem Chem Phys; 2014 Apr; 16(14):6376-82. PubMed ID: 24366448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into ligand binding to PreQ1 Riboswitch Aptamer from molecular dynamics simulations.
    Gong Z; Zhao Y; Chen C; Duan Y; Xiao Y
    PLoS One; 2014; 9(3):e92247. PubMed ID: 24663240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential effects of metal ion induced two-state allostery on the regulatory mechanism of add adenine riboswitch.
    Bao L; Kang WB; Xiao Y
    Commun Biol; 2022 Oct; 5(1):1120. PubMed ID: 36273041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A structural intermediate pre-organizes the add adenine riboswitch for ligand recognition.
    St-Pierre P; Shaw E; Jacques S; Dalgarno PA; Perez-Gonzalez C; Picard-Jean F; Penedo JC; Lafontaine DA
    Nucleic Acids Res; 2021 Jun; 49(10):5891-5904. PubMed ID: 33963862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational flexibility of adenine riboswitch aptamer in apo and bound states using NMR and an X-ray free electron laser.
    Ding J; Swain M; Yu P; Stagno JR; Wang YX
    J Biomol NMR; 2019 Sep; 73(8-9):509-518. PubMed ID: 31606878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Dynamics Simulations of the Aptamer Domain of Guanidinium Ion Binding Riboswitch
    Negi I; Mahmi AS; Seelam Prabhakar P; Sharma P
    J Chem Inf Model; 2021 Oct; 61(10):5243-5255. PubMed ID: 34609872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulation on the Thermosinus carboxydivorans pfl ZTP riboswitch by ligand binding.
    Yu-Nan H; Kang W; Yu S; Xiao-Jun X; Yan W; Xing-Ao L; Ting-Ting S
    Biochem Biophys Res Commun; 2022 Oct; 627():184-190. PubMed ID: 36044800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-molecule force spectroscopy of the add adenine riboswitch relates folding to regulatory mechanism.
    Neupane K; Yu H; Foster DA; Wang F; Woodside MT
    Nucleic Acids Res; 2011 Sep; 39(17):7677-87. PubMed ID: 21653559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms for differentiation between cognate and near-cognate ligands by purine riboswitches.
    Wacker A; Buck J; Richter C; Schwalbe H; Wöhnert J
    RNA Biol; 2012 May; 9(5):672-80. PubMed ID: 22647526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal adaptation of structural dynamics and regulatory function of adenine riboswitch.
    Wu L; Liu Z; Liu Y
    RNA Biol; 2021 Nov; 18(11):2007-2015. PubMed ID: 33573442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.