BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36227826)

  • 1. AV-casNet: Fully Automatic Arteriole-Venule Segmentation and Differentiation in OCT Angiography.
    Xu X; Yang P; Wang H; Xiao Z; Xing G; Zhang X; Wang W; Xu F; Zhang J; Lei J
    IEEE Trans Med Imaging; 2023 Feb; 42(2):481-492. PubMed ID: 36227826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning for artery-vein classification in optical coherence tomography angiography.
    Le D; Abtahi M; Adejumo T; Ebrahimi B; K Dadzie A; Son T; Yao X
    Exp Biol Med (Maywood); 2023 May; 248(9):747-761. PubMed ID: 37452729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinal OCTA Image Segmentation Based on Global Contrastive Learning.
    Ma Z; Feng D; Wang J; Ma H
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated OCT angiography image quality assessment using a deep learning algorithm.
    Lauermann JL; Treder M; Alnawaiseh M; Clemens CR; Eter N; Alten F
    Graefes Arch Clin Exp Ophthalmol; 2019 Aug; 257(8):1641-1648. PubMed ID: 31119426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated Segmentation of Retinal Fluid Volumes From Structural and Angiographic Optical Coherence Tomography Using Deep Learning.
    Guo Y; Hormel TT; Xiong H; Wang J; Hwang TS; Jia Y
    Transl Vis Sci Technol; 2020 Oct; 9(2):54. PubMed ID: 33110708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. OCT
    Tan X; Chen X; Meng Q; Shi F; Xiang D; Chen Z; Pan L; Zhu W
    Comput Methods Programs Biomed; 2023 May; 233():107454. PubMed ID: 36921468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic blood vessels segmentation based on different retinal maps from OCTA scans.
    Eladawi N; Elmogy M; Helmy O; Aboelfetouh A; Riad A; Sandhu H; Schaal S; El-Baz A
    Comput Biol Med; 2017 Oct; 89():150-161. PubMed ID: 28806613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. OCTA-500: A retinal dataset for optical coherence tomography angiography study.
    Li M; Huang K; Xu Q; Yang J; Zhang Y; Ji Z; Xie K; Yuan S; Liu Q; Chen Q
    Med Image Anal; 2024 Apr; 93():103092. PubMed ID: 38325155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An open-source deep learning network AVA-Net for arterial-venous area segmentation in optical coherence tomography angiography.
    Abtahi M; Le D; Ebrahimi B; Dadzie AK; Lim JI; Yao X
    Commun Med (Lond); 2023 Apr; 3(1):54. PubMed ID: 37069396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distances From Capillaries to Arterioles or Venules Measured Using OCTA and AOSLO.
    Arthur E; Elsner AE; Sapoznik KA; Papay JA; Muller MS; Burns SA
    Invest Ophthalmol Vis Sci; 2019 May; 60(6):1833-1844. PubMed ID: 31042789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning in optical coherence tomography angiography.
    Le D; Son T; Yao X
    Exp Biol Med (Maywood); 2021 Oct; 246(20):2170-2183. PubMed ID: 34279136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MF-AV-Net: an open-source deep learning network with multimodal fusion options for artery-vein segmentation in OCT angiography.
    Abtahi M; Le D; Lim JI; Yao X
    Biomed Opt Express; 2022 Sep; 13(9):4870-4888. PubMed ID: 36187235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Deep Learning Algorithm for Classifying Diabetic Retinopathy Using Optical Coherence Tomography Angiography.
    Ryu G; Lee K; Park D; Kim I; Park SH; Sagong M
    Transl Vis Sci Technol; 2022 Feb; 11(2):39. PubMed ID: 35703566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diagnosing Diabetic Retinopathy in OCTA Images Based on Multilevel Information Fusion Using a Deep Learning Framework.
    Li Q; Zhu XR; Sun G; Zhang L; Zhu M; Tian T; Guo C; Mazhar S; Yang JK; Li Y
    Comput Math Methods Med; 2022; 2022():4316507. PubMed ID: 35966243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiloss Function Based Deep Convolutional Neural Network for Segmentation of Retinal Vasculature into Arterioles and Venules.
    Badawi SA; Fraz MM
    Biomed Res Int; 2019; 2019():4747230. PubMed ID: 31111055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early diabetic retinopathy diagnosis based on local retinal blood vessel analysis in optical coherence tomography angiography (OCTA) images.
    Eladawi N; Elmogy M; Khalifa F; Ghazal M; Ghazi N; Aboelfetouh A; Riad A; Sandhu H; Schaal S; El-Baz A
    Med Phys; 2018 Oct; 45(10):4582-4599. PubMed ID: 30144102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An end-to-end network for segmenting the vasculature of three retinal capillary plexuses from OCT angiographic volumes.
    Guo Y; Hormel TT; Pi S; Wei X; Gao M; Morrison JC; Jia Y
    Biomed Opt Express; 2021 Aug; 12(8):4889-4900. PubMed ID: 34513231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated Diagnosis of Optical Coherence Tomography Angiography (OCTA) Based on Machine Learning Techniques.
    Yasser I; Khalifa F; Abdeltawab H; Ghazal M; Sandhu HS; El-Baz A
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Association Between the Severity of Diabetic Retinopathy and Optical Coherence Tomography Angiography Metrics.
    Xu B; Chen J; Zhang S; Shen S; Lan X; Chen Z; Yan Z; Xu B
    Front Endocrinol (Lausanne); 2021; 12():777552. PubMed ID: 34956088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Swept-source optical coherence tomography angiography vitreo-retinal segmentation in proliferative diabetic retinopathy.
    Papayannis A; Tsamis E; Stringa F; Iacono P; Battaglia Parodi M; Stanga PE
    Eur J Ophthalmol; 2021 Jul; 31(4):1925-1932. PubMed ID: 32722940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.