These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 36228397)

  • 1. Modelling flood susceptibility based on deep learning coupling with ensemble learning models.
    Li Y; Hong H
    J Environ Manage; 2023 Jan; 325(Pt A):116450. PubMed ID: 36228397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of genetic algorithm in optimization parallel ensemble-based machine learning algorithms to flood susceptibility mapping using radar satellite imagery.
    Razavi-Termeh SV; Sadeghi-Niaraki A; Seo M; Choi SM
    Sci Total Environ; 2023 May; 873():162285. PubMed ID: 36801341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel integrated modelling based on multiplicative long short-term memory (mLSTM) deep learning model and ensemble multi-criteria decision making (MCDM) models for mapping flood risk.
    Mohammadifar A; Gholami H; Golzari S
    J Environ Manage; 2023 Nov; 345():118838. PubMed ID: 37595460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How far spatial resolution affects the ensemble machine learning based flood susceptibility prediction in data sparse region.
    Saha TK; Pal S; Talukdar S; Debanshi S; Khatun R; Singha P; Mandal I
    J Environ Manage; 2021 Nov; 297():113344. PubMed ID: 34314957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new approach based on biology-inspired metaheuristic algorithms in combination with random forest to enhance the flood susceptibility mapping.
    Razavi-Termeh SV; Sadeghi-Niaraki A; Choi SM
    J Environ Manage; 2023 Nov; 345():118790. PubMed ID: 37647734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flood susceptibility evaluation through deep learning optimizer ensembles and GIS techniques.
    Costache R; Arabameri A; Costache I; Crăciun A; Md Towfiqul Islam AR; Abba SI; Sahana M; Pham BT
    J Environ Manage; 2022 Aug; 316():115316. PubMed ID: 35598454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flood susceptibility mapping in Dingnan County (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm.
    Wang Y; Hong H; Chen W; Li S; Panahi M; Khosravi K; Shirzadi A; Shahabi H; Panahi S; Costache R
    J Environ Manage; 2019 Oct; 247():712-729. PubMed ID: 31279803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Machine Learning Ensemble Approach Based on Random Forest and Radial Basis Function Neural Network for Risk Evaluation of Regional Flood Disaster: A Case Study of the Yangtze River Delta, China.
    Chen J; Li Q; Wang H; Deng M
    Int J Environ Res Public Health; 2019 Dec; 17(1):. PubMed ID: 31861677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution.
    Hong H; Panahi M; Shirzadi A; Ma T; Liu J; Zhu AX; Chen W; Kougias I; Kazakis N
    Sci Total Environ; 2018 Apr; 621():1124-1141. PubMed ID: 29074239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling flood susceptibility using data-driven approaches of naïve Bayes tree, alternating decision tree, and random forest methods.
    Chen W; Li Y; Xue W; Shahabi H; Li S; Hong H; Wang X; Bian H; Zhang S; Pradhan B; Ahmad BB
    Sci Total Environ; 2020 Jan; 701():134979. PubMed ID: 31733400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solving the spatial extrapolation problem in flood susceptibility using hybrid machine learning, remote sensing, and GIS.
    Nguyen HD; Nguyen QH; Bui QT
    Environ Sci Pollut Res Int; 2024 Mar; 31(12):18701-18722. PubMed ID: 38349496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flood susceptibility mapping by best-worst and logistic regression methods in Mersin, Turkey.
    Özay B; Orhan O
    Environ Sci Pollut Res Int; 2023 Mar; 30(15):45151-45170. PubMed ID: 36702983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced machine learning algorithms for flood susceptibility modeling - performance comparison: Red Sea, Egypt.
    Youssef AM; Pourghasemi HR; El-Haddad BA
    Environ Sci Pollut Res Int; 2022 Sep; 29(44):66768-66792. PubMed ID: 35508847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping.
    Shafizadeh-Moghadam H; Valavi R; Shahabi H; Chapi K; Shirzadi A
    J Environ Manage; 2018 Jul; 217():1-11. PubMed ID: 29579536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial prediction of flood potential using new ensembles of bivariate statistics and artificial intelligence: A case study at the Putna river catchment of Romania.
    Costache R; Tien Bui D
    Sci Total Environ; 2019 Nov; 691():1098-1118. PubMed ID: 31466192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing flood mapping through ensemble machine learning in the Gamasyab watershed, Western Iran.
    Bashirgonbad M; Farokhzadeh B; Gholami V
    Environ Sci Pollut Res Int; 2024 Aug; 31(38):50427-50442. PubMed ID: 39090299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of stacking hybrid machine learning algorithms in delineating multi-type flooding in Bangladesh.
    Rahman M; Chen N; Elbeltagi A; Islam MM; Alam M; Pourghasemi HR; Tao W; Zhang J; Shufeng T; Faiz H; Baig MA; Dewan A
    J Environ Manage; 2021 Oct; 295():113086. PubMed ID: 34153582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Threats of climate change and land use patterns enhance the susceptibility of future floods in India.
    Pal SC; Chowdhuri I; Das B; Chakrabortty R; Roy P; Saha A; Shit M
    J Environ Manage; 2022 Mar; 305():114317. PubMed ID: 34954685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping the spatial and temporal variability of flood hazard affected by climate and land-use changes in the future.
    Janizadeh S; Chandra Pal S; Saha A; Chowdhuri I; Ahmadi K; Mirzaei S; Mosavi AH; Tiefenbacher JP
    J Environ Manage; 2021 Nov; 298():113551. PubMed ID: 34435571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China.
    Hong H; Tsangaratos P; Ilia I; Liu J; Zhu AX; Chen W
    Sci Total Environ; 2018 Jun; 625():575-588. PubMed ID: 29291572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.