These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 36228578)
1. Hybrid mental tasks based human computer interface via integration of pronunciation and motor imagery. Tong J; Wei X; Dong E; Sun Z; Du S; Duan F J Neural Eng; 2022 Nov; 19(5):. PubMed ID: 36228578 [No Abstract] [Full Text] [Related]
2. Online detection of class-imbalanced error-related potentials evoked by motor imagery. Liu Q; Zheng W; Chen K; Ma L; Ai Q J Neural Eng; 2021 Apr; 18(4):. PubMed ID: 33823492 [No Abstract] [Full Text] [Related]
3. A novel method to reduce the motor imagery BCI illiteracy. Wang T; Du S; Dong E Med Biol Eng Comput; 2021 Nov; 59(11-12):2205-2217. PubMed ID: 34674118 [TBL] [Abstract][Full Text] [Related]
4. Filter bank sinc-convolutional network with channel self-attention for high performance motor imagery decoding. Chen J; Wang D; Yi W; Xu M; Tan X J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36763992 [No Abstract] [Full Text] [Related]
5. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study. Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295 [TBL] [Abstract][Full Text] [Related]
6. Decoding Multi-Class Motor Imagery and Motor Execution Tasks Using Riemannian Geometry Algorithms on Large EEG Datasets. Shuqfa Z; Belkacem AN; Lakas A Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299779 [TBL] [Abstract][Full Text] [Related]
7. [Execution, assessment and improvement methods of motor imagery for brain-computer interface]. Tian G; Chen J; Ding P; Gong A; Wang F; Luo J; Dong Y; Zhao L; Dang C; Fu Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Jun; 38(3):434-446. PubMed ID: 34180188 [TBL] [Abstract][Full Text] [Related]
8. Session-independent subject-adaptive mental imagery BCI using selective filter-bank adaptive Riemannian features. Meenakshinathan J; Gupta V; Reddy TK; Behera L; Sandhan T Med Biol Eng Comput; 2024 Nov; 62(11):3293-3310. PubMed ID: 38825665 [TBL] [Abstract][Full Text] [Related]
9. A novel method for classification of multi-class motor imagery tasks based on feature fusion. Hou Y; Chen T; Lun X; Wang F Neurosci Res; 2022 Mar; 176():40-48. PubMed ID: 34508756 [TBL] [Abstract][Full Text] [Related]
10. Enhancement of motor imagery training efficiency by an online adaptive training paradigm integrated with error related potential. Tao T; Jia Y; Xu G; Liang R; Zhang Q; Chen L; Gao Y; Chen R; Zheng X; Yu Y J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36608339 [No Abstract] [Full Text] [Related]
11. Unsupervised Motor Imagery Saliency Detection Based on Self-Attention Mechanism. Ayoobi N; Sadeghian EB Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4817-4820. PubMed ID: 36086139 [TBL] [Abstract][Full Text] [Related]
12. Towards increasing the number of commands in a hybrid brain-computer interface with combination of gaze and motor imagery. Meena YK; Cecotti H; KongFatt Wong-Lin ; Prasad G Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():506-9. PubMed ID: 26736310 [TBL] [Abstract][Full Text] [Related]
13. Study of MI-BCI classification method based on the Riemannian transform of personalized EEG spatiotemporal features. Ding X; Yang L; Li C Math Biosci Eng; 2023 May; 20(7):12454-12471. PubMed ID: 37501450 [TBL] [Abstract][Full Text] [Related]
14. A Stimulus-Independent Hybrid BCI Based on Motor Imagery and Somatosensory Attentional Orientation. Yao L; Sheng X; Zhang D; Jiang N; Mrachacz-Kersting N; Zhu X; Farina D IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1674-1682. PubMed ID: 28328506 [TBL] [Abstract][Full Text] [Related]
15. CSP-TSM: Optimizing the performance of Riemannian tangent space mapping using common spatial pattern for MI-BCI. Kumar S; Mamun K; Sharma A Comput Biol Med; 2017 Dec; 91():231-242. PubMed ID: 29100117 [TBL] [Abstract][Full Text] [Related]
16. Classification of motor imagery EEG using deep learning increases performance in inefficient BCI users. Tibrewal N; Leeuwis N; Alimardani M PLoS One; 2022; 17(7):e0268880. PubMed ID: 35867703 [TBL] [Abstract][Full Text] [Related]
17. EEG changes during passive movements improve the motor imagery feature extraction in BCIs-based sensory feedback calibration. Delisle-Rodriguez D; Silva L; Bastos-Filho T J Neural Eng; 2023 Feb; 20(1):. PubMed ID: 36716494 [No Abstract] [Full Text] [Related]
18. Improvements in Classification of Left and Right Foot Motor Intention Using Modulated Steady-State Somatosensory Evoked Potential Induced by Electrical Stimulation and Motor Imagery. Bian Y; Zhao L; Li J; Guo T; Fu X; Qi H IEEE Trans Neural Syst Rehabil Eng; 2023; 31():150-159. PubMed ID: 36318565 [TBL] [Abstract][Full Text] [Related]
19. Enhanced Motor Imagery Based Brain- Computer Interface via FES and VR for Lower Limbs. Ren S; Wang W; Hou ZG; Liang X; Wang J; Shi W IEEE Trans Neural Syst Rehabil Eng; 2020 Aug; 28(8):1846-1855. PubMed ID: 32746291 [TBL] [Abstract][Full Text] [Related]
20. EEG characteristic investigation of the sixth-finger motor imagery and optimal channel selection for classification. Liu Y; Wang Z; Huang S; Wang W; Ming D J Neural Eng; 2022 Jan; 19(1):. PubMed ID: 35008079 [No Abstract] [Full Text] [Related] [Next] [New Search]