BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 36228818)

  • 1. Interfacial silicon‑nitrogen aerogel raise flame retardancy of bamboo fiber reinforced polylactic acid composites.
    Niu Q; Yue X; Cao W; Guo Z; Fang Z; Chen P; Li J
    Int J Biol Macromol; 2022 Dec; 222(Pt B):2697-2708. PubMed ID: 36228818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of Bioepoxy Resin Microencapsulated Ammonium-Polyphosphate for Flame Retardancy of Polylactic Acid.
    Decsov K; Bocz K; Szolnoki B; Bourbigot S; Fontaine G; Vadas D; Marosi G
    Molecules; 2019 Nov; 24(22):. PubMed ID: 31739591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of chitosan on the flammability and thermal stability of polylactic acid/ammonium polyphosphate biocomposites.
    Chen C; Gu X; Jin X; Sun J; Zhang S
    Carbohydr Polym; 2017 Feb; 157():1586-1593. PubMed ID: 27987872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic Flame Retardancy of Phosphatized Sesbania Gum/Ammonium Polyphosphate on Polylactic Acid.
    Zhang Q; Liu H; Guan J; Yang X; Luo B
    Molecules; 2022 Jul; 27(15):. PubMed ID: 35897921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-light polylactic acid/combination composite foam: A fully biodegradable flame retardant material.
    Jia L; Huang W; Zhao Y; Wen S; Yu Z; Zhang Z
    Int J Biol Macromol; 2022 Nov; 220():754-765. PubMed ID: 35985399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effects of a Macromolecular Charring Agent with Gas Phase and Condense Phase Synergistic Flame Retardant Capability on the Properties of PP/IFR Composites.
    Chen H; Wang J; Ni A; Ding A; Han X; Sun Z
    Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29324716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of phosphoramide derivatives in flame retardancy, thermal degradation and crystallization behaviors of polylactic acid.
    Hu X; Wang B; Guo Z; Fang Z; Chen P; Li J
    Int J Biol Macromol; 2022 Oct; 219():558-570. PubMed ID: 35907467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving flame retardant and electromagnetic interference shielding properties of poly(lactic acid)/poly(ε-caprolactone) composites using catalytic imidazolium modified CNTs and ammonium polyphosphate.
    Wang Z; Yan T; Gao Y; Ma X; Xu P; Ding Y
    Int J Biol Macromol; 2024 Feb; 259(Pt 2):129265. PubMed ID: 38218292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward flame-retardant and toughened poly(lactic acid)/cross-linked polyurethane blends via the interfacial reaction with the modified bio-based flame retardants.
    Jiang Z; Ma M; Wang X; Chen S; Shi Y; He H; Wang X
    Int J Biol Macromol; 2023 Nov; 251():126206. PubMed ID: 37562482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilization of spent coffee grounds as charring agent to prepare flame retardant poly(lactic acid) composites with improved toughness.
    Yan M; Pang Y; Shao W; Ma C; Zheng W
    Int J Biol Macromol; 2024 Apr; 264(Pt 1):130534. PubMed ID: 38432276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of γ-Divinyl-3-Aminopropyltriethoxysilane Modified Lignin and Its Application in Flame Retardant Poly(lactic acid).
    Song Y; Zong X; Wang N; Yan N; Shan X; Li J
    Materials (Basel); 2018 Aug; 11(9):. PubMed ID: 30135388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced fire-proofing performance and crystallizability of bio-based poly(L-lactic acid): Dual functions of a Schiff base-containing synergistic flame retardant.
    Wu J; Yin Z; Sun X; Zhang X; Zhu Z; Xu Z; Yang J; Xie Z; Li Y; Yang X; Huang Q; Liu J; Wang J
    Int J Biol Macromol; 2022 Dec; 222(Pt A):305-324. PubMed ID: 36150571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flame Retardancy and Thermal Behavior of an Unsaturated Polyester Modified with Kaolinite-Urea Intercalation Complexes.
    Yue L; Li J; Zhou X; Sun Y; Gao M; Zhu T; Zhang X; Feng T; Shi Z; Liu Y
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33076390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Basalt Fiber-Based Flame Retardant Epoxy Composites: Preparation, Thermal Properties, and Flame Retardancy.
    Guo Y; Zhou M; Yin GZ; Kalali E; Wang N; Wang DY
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33672823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of cellulose acetate butyrate microencapsulated ammonium polyphosphate on the flame retardancy, mechanical, electrical, and thermal properties of intumescent flame-retardant ethylene-vinyl acetate copolymer/microencapsulated ammonium polyphosphate/polyamide-6 blends.
    Wang B; Tang Q; Hong N; Song L; Wang L; Shi Y; Hu Y
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3754-61. PubMed ID: 21859130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of Flame Retardancy and Mechanical Properties of Polylactic Acid with a Biodegradable Fire-Retardant Filler System Based on Bamboo Charcoal.
    Li W; Zhang L; Chai W; Yin N; Semple K; Li L; Zhang W; Dai C
    Polymers (Basel); 2021 Jun; 13(13):. PubMed ID: 34209000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic effect of stereo-complexation and interfacial compatibility in ammonium polyphosphate grafted polylactic acid fibers for simultaneously improved toughness and flame retardancy.
    Zheng S; Li W; Chen Y; Yang H; Cai Y; Wang Q; Wei Q
    Int J Biol Macromol; 2024 Mar; 261(Pt 2):129943. PubMed ID: 38311135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A nimble strategy for enabling bioderived flame retardants with strikingly enhanced interfacial compatibility in poly (lactic acid) composites.
    Yi L; Lu J; Su J; Zhai S; Han J
    Int J Biol Macromol; 2024 Jun; 270(Pt 1):132260. PubMed ID: 38734338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the Flame-Retardant and Mechanical Properties of Bamboo Fiber-Reinforced Polypropylene Composites with Melamine Pyrophosphate and Aluminum Hypophosphite Addition.
    Fang L; Lu X; Zeng J; Chen Y; Tang Q
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31963882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient approach to improving the flame retardancy of poly(vinyl alcohol)/clay aerogels: incorporating piperazine-modified ammonium polyphosphate.
    Wang YT; Liao SF; Shang K; Chen MJ; Huang JQ; Wang YZ; Schiraldi DA
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1780-6. PubMed ID: 25588129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.