These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 36228831)
1. Adversarial deep evolutionary learning for drug design. Abouchekeir S; Vu A; Mukaidaisi M; Grantham K; Tchagang A; Li Y Biosystems; 2022 Dec; 222():104790. PubMed ID: 36228831 [TBL] [Abstract][Full Text] [Related]
2. druGAN: An Advanced Generative Adversarial Autoencoder Model for de Novo Generation of New Molecules with Desired Molecular Properties in Silico. Kadurin A; Nikolenko S; Khrabrov K; Aliper A; Zhavoronkov A Mol Pharm; 2017 Sep; 14(9):3098-3104. PubMed ID: 28703000 [TBL] [Abstract][Full Text] [Related]
3. The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology. Kadurin A; Aliper A; Kazennov A; Mamoshina P; Vanhaelen Q; Khrabrov K; Zhavoronkov A Oncotarget; 2017 Feb; 8(7):10883-10890. PubMed ID: 28029644 [TBL] [Abstract][Full Text] [Related]
4. Adversarial autoencoder for visualization and classification of human activity: Application to a low-cost commercial force plate. Hernandez V; Kulić D; Venture G J Biomech; 2020 Apr; 103():109684. PubMed ID: 32213290 [TBL] [Abstract][Full Text] [Related]
5. Generative chemistry: drug discovery with deep learning generative models. Bian Y; Xie XQ J Mol Model; 2021 Feb; 27(3):71. PubMed ID: 33543405 [TBL] [Abstract][Full Text] [Related]
6. Generative machine learning for de novo drug discovery: A systematic review. Martinelli DD Comput Biol Med; 2022 Jun; 145():105403. PubMed ID: 35339849 [TBL] [Abstract][Full Text] [Related]
7. CiwGAN and fiwGAN: Encoding information in acoustic data to model lexical learning with Generative Adversarial Networks. Beguš G Neural Netw; 2021 Jul; 139():305-325. PubMed ID: 33873122 [TBL] [Abstract][Full Text] [Related]
8. Improving Speech Emotion Recognition With Adversarial Data Augmentation Network. Yi L; Mak MW IEEE Trans Neural Netw Learn Syst; 2022 Jan; 33(1):172-184. PubMed ID: 33035171 [TBL] [Abstract][Full Text] [Related]
9. De Novo Peptide and Protein Design Using Generative Adversarial Networks: An Update. Lin E; Lin CH; Lane HY J Chem Inf Model; 2022 Feb; 62(4):761-774. PubMed ID: 35128926 [TBL] [Abstract][Full Text] [Related]
10. Lifelong Generative Adversarial Autoencoder. Ye F; Bors AG IEEE Trans Neural Netw Learn Syst; 2024 Oct; 35(10):14684-14698. PubMed ID: 37410645 [TBL] [Abstract][Full Text] [Related]
11. A de novo molecular generation method using latent vector based generative adversarial network. Prykhodko O; Johansson SV; Kotsias PC; Arús-Pous J; Bjerrum EJ; Engkvist O; Chen H J Cheminform; 2019 Dec; 11(1):74. PubMed ID: 33430938 [TBL] [Abstract][Full Text] [Related]
12. Adversarial Autoencoder and Multi-Armed Bandit for Dynamic Difficulty Adjustment in Immersive Virtual Reality for Rehabilitation: Application to Hand Movement. Kamikokuryo K; Haga T; Venture G; Hernandez V Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746280 [TBL] [Abstract][Full Text] [Related]
13. Generating sequential electronic health records using dual adversarial autoencoder. Lee D; Yu H; Jiang X; Rogith D; Gudala M; Tejani M; Zhang Q; Xiong L J Am Med Inform Assoc; 2020 Jul; 27(9):1411-1419. PubMed ID: 32989459 [TBL] [Abstract][Full Text] [Related]
14. Reinforced Adversarial Neural Computer for de Novo Molecular Design. Putin E; Asadulaev A; Ivanenkov Y; Aladinskiy V; Sanchez-Lengeling B; Aspuru-Guzik A; Zhavoronkov A J Chem Inf Model; 2018 Jun; 58(6):1194-1204. PubMed ID: 29762023 [TBL] [Abstract][Full Text] [Related]
15. Learning brain representation using recurrent Wasserstein generative adversarial net. Qiang N; Dong Q; Liang H; Li J; Zhang S; Zhang C; Ge B; Sun Y; Gao J; Liu T; Yue H; Zhao S Comput Methods Programs Biomed; 2022 Aug; 223():106979. PubMed ID: 35792364 [TBL] [Abstract][Full Text] [Related]
16. Manifold adversarial training for supervised and semi-supervised learning. Zhang S; Huang K; Zhu J; Liu Y Neural Netw; 2021 Aug; 140():282-293. PubMed ID: 33839600 [TBL] [Abstract][Full Text] [Related]
17. Latent adversarial regularized autoencoder for high-dimensional probabilistic time series prediction. Zhang J; Dai Q Neural Netw; 2022 Nov; 155():383-397. PubMed ID: 36115164 [TBL] [Abstract][Full Text] [Related]
18. Advances in de Novo Drug Design: From Conventional to Machine Learning Methods. Mouchlis VD; Afantitis A; Serra A; Fratello M; Papadiamantis AG; Aidinis V; Lynch I; Greco D; Melagraki G Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33562347 [TBL] [Abstract][Full Text] [Related]
19. Adversarial Threshold Neural Computer for Molecular de Novo Design. Putin E; Asadulaev A; Vanhaelen Q; Ivanenkov Y; Aladinskaya AV; Aliper A; Zhavoronkov A Mol Pharm; 2018 Oct; 15(10):4386-4397. PubMed ID: 29569445 [TBL] [Abstract][Full Text] [Related]
20. Deep Convolutional Generative Adversarial Network (dcGAN) Models for Screening and Design of Small Molecules Targeting Cannabinoid Receptors. Bian Y; Wang J; Jun JJ; Xie XQ Mol Pharm; 2019 Nov; 16(11):4451-4460. PubMed ID: 31589460 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]