These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 36228894)

  • 41. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses.
    Baek HJ; Kim HS; Heo J; Lim YG; Park KS
    J Neural Eng; 2013 Apr; 10(2):024001. PubMed ID: 23448913
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Hybrid Speller Design Using Eye Tracking and SSVEP Brain-Computer Interface.
    Mannan MMN; Kamran MA; Kang S; Choi HS; Jeong MY
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32046131
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI.
    Chang MH; Lee JS; Heo J; Park KS
    J Neurosci Methods; 2016 Jan; 258():104-13. PubMed ID: 26561770
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of fatigue on steady state motion visual evoked potentials: Optimised stimulus parameters for a zoom motion-based brain-computer interface.
    Chai X; Zhang Z; Guan K; Zhang T; Xu J; Niu H
    Comput Methods Programs Biomed; 2020 Nov; 196():105650. PubMed ID: 32682092
    [TBL] [Abstract][Full Text] [Related]  

  • 45. SSVEP-assisted RSVP brain-computer interface paradigm for multi-target classification.
    Ko LW; Sandeep Vara Sankar D; Huang Y; Lu YC; Shaw S; Jung TP
    J Neural Eng; 2021 Feb; 18(1):. PubMed ID: 33291083
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Single stimulus location for two inputs: A combined brain-computer interface based on Steady-State Visual Evoked Potential (SSVEP).
    Wang L; Zhang Z; Han D; Zhang Z; Liu Z; Liu W
    Eur J Neurosci; 2021 Feb; 53(3):861-875. PubMed ID: 33128787
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Exploration of User's Mental State Changes during Performing Brain-Computer Interface.
    Ko LW; Chikara RK; Lee YC; Lin WC
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32503162
    [TBL] [Abstract][Full Text] [Related]  

  • 48. On the quantification of SSVEP frequency responses in human EEG in realistic BCI conditions.
    Kuś R; Duszyk A; Milanowski P; Łabęcki M; Bierzyńska M; Radzikowska Z; Michalska M; Zygierewicz J; Suffczyński P; Durka PJ
    PLoS One; 2013; 8(10):e77536. PubMed ID: 24204862
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Recognition of high-frequency steady-state visual evoked potential for brain-computer interface].
    Luo R; Dou X; Xiao X; Wu Q; Xu M; Ming D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2023 Aug; 40(4):683-691. PubMed ID: 37666758
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Commanding a robotic wheelchair with a high-frequency steady-state visual evoked potential based brain-computer interface.
    Diez PF; Torres Müller SM; Mut VA; Laciar E; Avila E; Bastos-Filho TF; Sarcinelli-Filho M
    Med Eng Phys; 2013 Aug; 35(8):1155-64. PubMed ID: 23339894
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Decoding overt shifts of attention in depth through pupillary and cortical frequency tagging.
    de'Sperati C; Roatta S; Zovetti N; Baroni T
    J Neural Eng; 2021 Mar; 18(3):. PubMed ID: 32348980
    [No Abstract]   [Full Text] [Related]  

  • 52. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter.
    Zhang D; Huang B; Wu W; Li S
    Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An approximation approach for rendering visual flickers in SSVEP-based BCI using monitor refresh rate.
    Nakanishi M; Wang Y; Wang YT; Mitsukura Y; Jung TP
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2176-9. PubMed ID: 24110153
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Clinical feasibility of brain-computer interface based on steady-state visual evoked potential in patients with locked-in syndrome: Case studies.
    Hwang HJ; Han CH; Lim JH; Kim YW; Choi SI; An KO; Lee JH; Cha HS; Hyun Kim S; Im CH
    Psychophysiology; 2017 Mar; 54(3):444-451. PubMed ID: 27914171
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An Online Brain-Computer Interface Based on SSVEPs Measured From Non-Hair-Bearing Areas.
    Wang YT; Nakanishi M; Wang Y; Wei CS; Cheng CK; Jung TP
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jan; 25(1):11-18. PubMed ID: 27254871
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phase-Approaching Stimulation Sequence for SSVEP-Based BCI: A Practical Use in VR/AR HMD.
    Hsu HT; Shyu KK; Hsu CC; Lee LH; Lee PL
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2754-2764. PubMed ID: 34847036
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Estimating and approaching the maximum information rate of noninvasive visual brain-computer interface.
    Shi N; Miao Y; Huang C; Li X; Song Y; Chen X; Wang Y; Gao X
    Neuroimage; 2024 Apr; 289():120548. PubMed ID: 38382863
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Exploring the possibilities and limitations of multitarget SSVEP-based BCI applications.
    Gembler F; Stawicki P; Volosyak I
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1488-1491. PubMed ID: 28268608
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Polychromatic SSVEP stimuli with subtle flickering adapted to brain-display interactions.
    Chien YY; Lin FC; Zao JK; Chou CC; Huang YP; Kuo HY; Wang Y; Jung TP; Shieh HD
    J Neural Eng; 2017 Feb; 14(1):016018. PubMed ID: 28000607
    [TBL] [Abstract][Full Text] [Related]  

  • 60. SSVEP-modulation by covert and overt attention: Novel features for BCI in attention neuro-rehabilitation.
    Ordikhani-Seyedlar M; Sorensen HB; Kjaer TW; Siebner HR; Puthusserypady S
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5462-5. PubMed ID: 25571230
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.